Muhammad Ahsan Saleem | Additive Manufacturing | Best Researcher Award

Mr. Muhammad Ahsan Saleem | Additive Manufacturing | Best Researcher Award

Nanjing University of Science and Technology, China

Profile:

Current Position🎓

Muhammad Ahsan SALEEM is currently pursuing his Doctor of Engineering in Mechanical Engineering at Nanjing University of Science and Technology (NUST) in Nanjing, China, since September 2020. As a researcher, he is deeply involved in interdisciplinary projects that combine mechanical engineering, data science, and 3D printing technology. His current focus is on optimization of inkjet printing processes, particularly targeting low edge roughness and dimensional precision for multi-material applications.

Research Focus 🧑‍🔬

SALEEM works on experimental design to explore the jetting behavior of high-viscosity inks during inkjet-based 3D printing and applies machine learning and data acquisition techniques to drive innovation in the lab. His expertise lies in integrating data-driven approaches to advance the development of functional 3D-printed components such as electrical resistors made from a composite of conductive and insulating materials. These efforts aim to improve the precision and quality of printed parts for various industrial applications.

Publication Achievements 📝

While still in the early stages of his doctoral research, Muhammad Ahsan SALEEM has contributed to several technical reports and research projects at NUST. His work, which integrates machine learning and 3D printing technology, is poised for publication in prominent journals related to mechanical engineering and manufacturing. SALEEM is enthusiastic about publishing his findings in peer-reviewed platforms that will help establish his contributions to mechanical and mechatronics engineering.

Ongoing Research 🔬

Ahsan’s ongoing research centers on multi-material 3D printing, with a special focus on the development of inkjet-based 3D printing processes for industrial applications. His experimental research explores the jetting behavior of high-viscosity inks, which is essential for the precise fabrication of parts requiring specific resistivity characteristics. He is also investigating ways to incorporate machine learning into the research process to predict and enhance the quality and efficiency of printed materials.

Research Interests 🔍

SALEEM’s primary research interests lie in mechatronics engineering, with a specific focus on 3D printing and automation. His work explores the intersection of mechanical engineering, robotics, and data science, particularly in the development of advanced manufacturing techniques. His research also covers areas such as electromechanical systems, sensor technology, and data acquisition methods used in precision engineering processes.

Academic Background 🎓

SALEEM’s academic journey is marked by a solid foundation in engineering. He holds a Bachelor of Science in Mechatronics Engineering from the University of Engineering and Technology, Taxila, Pakistan (2013), and a Master of Engineering in Mechanical Engineering from Nanjing University of Science and Technology, China (2018). His diverse educational experiences have equipped him with a deep understanding of both theoretical and practical aspects of mechatronics and mechanical engineering. His advanced studies in Doctor of Engineering are pushing the boundaries of 3D printing and advanced manufacturing technologies.

Scholarships and Awards 🏆

Throughout his academic career, SALEEM has earned recognition for his academic excellence. He was awarded various scholarships and honors during his Master’s degree and Doctoral research, further solidifying his commitment to research and development in engineering. These awards not only acknowledge his technical prowess but also highlight his potential for significant contributions to the field of mechatronics and mechanical engineering.

Bioinformatics 🧬

While bioinformatics is not his core research area, SALEEM’s interdisciplinary approach to engineering involves elements of data analysis and algorithm development, skills that are integral to bioinformatics as well. His research on machine learning and data acquisition for engineering applications shares similarities with bioinformatics research, especially in terms of data-driven optimization and precision.

Professional Associations 👥

Muhammad Ahsan SALEEM is a member of several professional associations related to mechanical engineering and mechatronics. These associations help him stay updated on the latest trends, research, and technological advancements in the field. His membership also provides opportunities to engage with fellow professionals, share knowledge, and collaborate on cutting-edge research projects.

Training & Workshops 🎓

In addition to his formal education, SALEEM has participated in numerous workshops and training sessions focused on advanced manufacturing, automation, and machine learning. These workshops have equipped him with essential skills in 3D printing technologies and data-driven engineering, which he applies in his current research.

Oral Presentations and Conference Participation 🎤

Ahsan actively participates in engineering conferences and workshops, where he presents his research findings and engages with other researchers in the field. His ability to communicate complex ideas clearly and effectively has allowed him to gain visibility in the academic community, particularly in areas related to 3D printing and mechatronics engineering.

Tasks Completed as a Researcher 🔧

As part of his doctoral research, SALEEM has successfully contributed to the development and optimization of inkjet printing processes for advanced manufacturing applications. His work includes designing experiments to study high-viscosity inks and collaborating with his research team to integrate machine learning techniques for real-time data acquisition and analysis. He has also worked on experimental setups for multi-material 3D printing, exploring the use of conductive and insulating composites in the production of electrical resistors.

Success Factors 🌟

SALEEM’s success as a researcher can be attributed to his collaborative mindset, technical expertise, and innovative approach to solving complex engineering challenges. His ability to work well within a team, his commitment to data-driven methodologies, and his focus on continuous improvement have positioned him as a rising star in mechatronics engineering and 3D printing technology.

Laboratory Experience 🔬📚

Although still in the process of publishing his research, SALEEM has accumulated significant experience working in various research labs at Nanjing University of Science and Technology. He has contributed to the development of experimental setups, data acquisition systems, and machine learning models, which are integral to his research on inkjet printing and multi-material manufacturing.

📖Publications:

Paper Title: Influence of Silicon Carbide on Direct Powder Bed Selective Laser Process (Sintering/Melting) of Alumina

  • Authors: Rehman, A.U. Saleem, M.A. Liu, T. Pitir, F. Salamci, M.U.
  • Journal: Materials
  • Year: 2022

Paper Title: Quantized Event-triggered feedback control under fuzzy system with time-varying delay and Actuator fault

  • Authors: Aslam, M.S. Qaisar, I. Saleem, M.A.
  • Journal: Nonlinear Analysis: Hybrid Systems
  • Year: 2020

 

Paul Bere | Fiber Reinforcement in Composites | FRP Industry Collaboration Award

Prof Dr. Paul Bere | Fiber Reinforcement in Composites | FRP Industry Collaboration Award

Professor at Technical University of Cluj-Napoca, Romania

Profiles:

Current Position🏢

Professor Paul Petru Bere currently serves as a Professor at the Technical University of Cluj-Napoca, within the Faculty of Industrial Engineering, Robotics, and Production Management, specifically in the Manufacturing Engineering Department. He holds a significant position in the academic community, contributing his expertise and experience in manufacturing and polymeric composite materials. His extensive background in teaching, combined with his cutting-edge research, enables him to impact both the academic and industrial sectors. He has been a part of the university since 2018, after a successful tenure as an Associate Professor from 2018 to 2023.

Educational and Professional Background 📚

Professor Bere earned his Doctor of Engineering degree from the Technical University of Cluj-Napoca in 2009, specializing in manufacturing and mechanical behavior of polymeric composite tubes. This research was pivotal in understanding the potential applications and mechanical characteristics of composite materials, specifically in manufacturing processes. Furthermore, he obtained his Master’s degree in Modern Technology of Manufacturing Composite and Plastic Parts from the same institution, where he focused on rapid prototyping technologies and plastic and MC parts manufacturing. This foundation in both engineering and research laid the groundwork for his subsequent academic and professional achievements.

Research Interests and Ongoing Projects 🧠

Professor Bere’s research is primarily focused on advanced manufacturing technologies, composite materials, and polymeric materials used in sustainable development and automotive manufacturing. His ongoing research aims to optimize fiber-reinforced polymer composites for the electric vehicle industry, enhancing the performance and sustainability of components for electric vehicle bodies. He is actively involved in the EU-funded BRIDGE GRANT project titled “Optimization of Fiber-Reinforced Polymer Composite Materials and Manufacturing Technology Used in the Construction of Body Elements for Electric Vehicles”. This project, which holds a grant value of €100,000, investigates innovative manufacturing methods to make electric vehicles more efficient and environmentally friendly.

Moreover, his international research collaboration focuses on “Design and Modeling of Complex Surfaces Made of Composite Materials Using Catia V5 R20 Software”, highlighting his global contribution to the development of advanced manufacturing processes and materials.

Publication Achievements and Research Output 📄

Professor Bere has authored over 20 academic papers published in peer-reviewed journals and presented at various international conferences. His work has been extensively cited in fields related to composite materials, manufacturing technologies, and automotive industries. These contributions have earned him recognition as a key scholar in the manufacturing engineering field, influencing both academic circles and industrial practices. His research in composite material behavior and advanced production technologies is widely regarded as impactful in improving sustainability and performance in multiple industries, including automotive and aerospace engineering.

Awards and Recognition 🏆

Throughout his career, Professor Bere has been the recipient of several prestigious awards, including the BRIDGE GRANT, which allowed him to lead the research project on electric vehicle body optimization. His leadership in securing funding for significant research projects exemplifies his prowess in navigating and securing governmental and international funding for crucial scientific research. His successful management of the PN-III-CERC-CO-BG-2016 project demonstrates his ability to lead high-value research initiatives. This grant focuses on fiber-reinforced polymer composite materials, making significant strides in sustainable materials research.

Professional Associations and Collaborations 🌍

Professor Bere is an active member of several professional associations related to manufacturing engineering, composite materials, and sustainable manufacturing. His leadership in international collaborations strengthens his role as a bridge between Romanian academia and global research networks. His role as the project manager for international research agreements further highlights his capacity for collaboration and knowledge sharing in the scientific community.

Training, Workshops, and Oral Presentations 🗣️

With 28 years of teaching experience, Professor Bere has also contributed extensively to training the next generation of engineers. He has delivered numerous workshops on composite materials, advanced manufacturing technologies, and sustainable development. These workshops are vital in equipping students and professionals with practical skills that align with cutting-edge industrial applications. His extensive background in CAD mold design and prototyping techniques ensures that he is highly qualified to train others in these important areas.

He has also presented at many international conferences, where his oral presentations on manufacturing technologies and sustainable material applications have garnered attention. His ability to communicate complex research to diverse audiences has been one of his key strengths.

Laboratory Experience and Research Success 🔬

Throughout his career, Professor Bere has developed and conducted numerous experimental studies in the field of polymeric composite materials. His laboratory research focuses on understanding the manufacturing processes and mechanical behaviors of composite materials, crucial for industries such as automotive and aerospace. He has successfully led multiple experimental projects, and his work continues to shape the future of smart manufacturing and sustainable material use.

A Well-Rounded Leader in Manufacturing Engineering 🌟

Professor Paul Petru Bere stands out as an exceptional scholar and researcher. His strong academic credentials, extensive research, and successful project management make him a strong candidate for recognition. His ongoing work in optimizing composite materials and developing sustainable manufacturing technologies is paving the way for innovations in electric vehicles and other industries. With his dedication to both teaching and research, his significant contributions to the manufacturing engineering field are invaluable. His work is essential not only for the academic community but also for industry advancements, making him a true leader in his field.

📖Publications:

Paper Title: Design and Manufacture of Bent and Variable Section Tubes Made of FRP Composite

  • Authors: Bere, P., Dudescu, C., Parparit, M., Vilau, C.
  • Journal: MM Science Journal
  • Year: 2024

Paper Title: Understanding the Effect of Drilling Parameters on Hole Quality of Fiber-Reinforced Polymer Structures

  • Authors: Biruk-Urban, K., Bere, P., Udroiu, R., Józwik, J., Beer-Lech, K.
  • Journal: Polymers
  • Year: 2024

Paper Title: Study of the Torsional Phenomena in the Wing Structure of a Quadplane Type UAS

  • Authors: Parparita, M., Bere, P., Jozwik, J.
  • Journal: IEEE International Workshop on Metrology for Aerospace, MetroAeroSpace 2024
  • Year: 2024

Paper Title: Evaluation of the Tribological Properties of Different Fiber Reinforced Polymers

  • Authors: Cioaza, M., Birleanu, C., Pustan, M., Bere, P., Contiu, G.
  • Journal: Mechanisms and Machine Science
  • Year: 2024

Paper Title: Tribological Investigation of Glass Fiber Reinforced Polymer Composites against 52100 Chrome Alloy Steel Based on ELECTRE Decision-Making Method

  • Authors: Birleanu, C., Cioaza, M., Serdean, F., Bere, P., Contiu, G.
  • Journal: Polymers
  • Year: 2024

 

Debin Wang | Fiber Reinforcement in Composites | Best Researcher Award

Assoc Prof Dr. Debin Wang | Fiber Reinforcement in Composites | Best Researcher Award

Professor at Dalian Jiaotong University, China

Profile:

Current Position🌟

De-bin Wang serves as an Associate Professor at Dalian Jiaotong University, where he contributes significantly to the fields of structural seismic resistance and earthquake engineering. With his strong foundation in structural engineering, he specializes in innovative solutions that enhance infrastructure resilience, particularly in seismic-prone regions. His role as an educator and researcher allows him to guide students while driving forward projects in structural dynamics and earthquake-resistant design.

Academic Background📚

Dr. Wang holds a PhD from Dalian University of Technology, earned in 2013, where he developed a solid academic foundation in civil and structural engineering. Following his doctorate, he began his teaching and research career at Dalian Jiaotong University. His background emphasizes earthquake engineering, where he has conducted extensive studies on seismic-resistant structures, a field in which he continues to expand his expertise and make noteworthy contributions.

Scholarships and Awards🏆

Over his career, Dr. Wang has earned multiple awards, reflecting his commitment and expertise in his field. He has received recognition for his contributions to seismic research and his role as a leader in innovative earthquake-resistant technologies. These accolades underscore his dedication to research excellence and pioneering solutions in structural engineering.

Ongoing Research Projects🔍

Dr. Wang is currently leading two significant research projects focusing on seismic performance and structural collapse dynamics:

National Natural Science Foundation Youth Program: This project, titled “Research on Seismic Performance and Asymmetric Structural Collapse Process of Reinforced Concrete Columns under Composite Dynamic Loads,” explores how various dynamic loads influence reinforced concrete columns’ stability during seismic events. The project aims to improve our understanding of structural resilience and inform safer building practices.

Liaoning Provincial Department of Education General Project: This project investigates “The Collapse Process of Bridge Structures Considering Bridge Pier Corrosion and Dynamic Effects.” By examining corrosion’s effects on bridge integrity, this research addresses long-term durability and seismic safety in aging infrastructure.

Consultancy and Industry Projects📜

Dr. Wang actively collaborates with industry leaders on projects that bring his research into practical application:

  • China Railway No.3 Engineering Group Co., Ltd.: Dr. Wang is consulting on the seismic performance of prefabricated concrete bridge pier connections, a project designed to enhance the stability of bridge structures.
  • Institute of Disaster Prevention: Here, he focuses on developing self-centering energy-dissipating braces for bridges, adding an extra layer of protection against seismic forces.

These industry projects highlight his commitment to ensuring that his research positively impacts infrastructure safety and resilience.

Research Interests🔬

Dr. Wang’s research interests center around earthquake engineering, seismic resistance, energy dissipation in structures, and structural health monitoring. His work has led to innovative dampers and seismic resistance mechanisms aimed at protecting infrastructure from earthquakes. His contributions to earthquake-resistant technologies showcase his vision of safer, more resilient urban spaces.

Professional Associations🧑‍🔬

As a recognized expert, Dr. Wang is actively involved in professional organizations related to structural and earthquake engineering. His memberships help him stay connected with other professionals and researchers, promoting collaboration and knowledge-sharing that strengthen his research output and industry impact.

Training & Workshops🎓

Throughout his career, Dr. Wang has participated in various workshops and training programs. These sessions cover topics such as advanced earthquake engineering, new seismic technologies, and structural health monitoring, keeping him updated with the latest trends and methodologies.

Oral Presentations📢

Dr. Wang frequently presents his findings at conferences and symposia where he shares insights into self-centering systems and damping technologies for earthquake resilience. His presentations attract the attention of both academic and industry professionals interested in adopting innovative structural solutions to improve safety in seismic zones.

Tasks Completed as a Researcher🏅

As a lead researcher, Dr. Wang has successfully completed multiple tasks, including:

  • Overseeing extensive field tests on seismic-resilient materials.
  • Developing simulation models for earthquake-induced stress analysis in structures.
  • Authoring comprehensive reports for government and industry stakeholders on seismic risk mitigation.

These accomplishments reflect his dedication to thorough, impactful research.

Success Factors🌱

Dr. Wang attributes his success to a strong foundation in structural engineering principles and a persistent drive to address real-world challenges through innovation. His work ethic, collaborative spirit, and ability to translate research into tangible industry solutions make him a valued contributor to the field.

Publications & Laboratory Experience📊

Dr. Wang’s laboratory experience encompasses a wide array of structural tests, from material durability analysis to seismic simulations that examine structural behavior under earthquake conditions. His lab-based findings directly contribute to the publications and patents he has secured, illustrating his approach to rigorous, data-driven research that informs his innovative solutions in seismic resilience.

📖Publications:

Paper Title: Experimental and Analytical Investigation on the Behavior of Deformation-Amplified Torsional Steel-Tube Dampers

  • Authors: Wang, D.-B., Wang, S.-H., Sun, Z.-G., Wang, W.-M.
  • Journal: Journal of Constructional Steel Research
  • Year: 2025

Paper Title: Study on the mechanical properties of a viscoelastic self-centering brace with rotational displacement amplification and its application in RC frames

  • Authors: Wang, D., Pang, R., Fan, G., Wang, G.
  • Journal: Journal of Building Engineering
  • Year: 2024

Paper Title: Performance Tests of Rotating-Amplification Type Friction Self-Centering Brace and Its Restoring Force Model Verification

  • Authors: Wang, D., Zhang, X., Fu, X., Wang, W., Liu, L.
  • Journal: Zhendong yu Chongji/Journal of Vibration and Shock
  • Year: 2024

Paper Title: Study on Seismic Performance of Exterior Reinforced Concrete Beam-Column Joint Under Variable Loading Speeds or Axial Forces

  • Authors: Fan, G., Xiang, W., Wang, D., Dou, Z., Tang, X.
  • Journal: Earthquake and Structures
  • Year: 2024

Paper Title: Research on the Mechanical Model and Hysteresis Performance of a New Mild Steel-Rotational Friction Hybrid Self-Centering Damper

  • Authors: Wang, D., Pang, R., Wang, G., Fan, G.
  • Journal: Materials
  • Year: 2023

 

Olusegun Tomomewo | Carbon Fiber Composites | Best Researcher Award

Dr. Olusegun Tomomewo | Carbon Fiber Composites | Best Researcher Award

Doctorate at University of North Dakota, United States

Profiles:

Current Position 🔬

Dr. Olusegun “Stanley” Tomomewo currently serves as an Assistant Professor at the University of North Dakota, Grand Forks. His primary role is within the field of energy sustainability, where he contributes to the academic and research landscape through teaching and mentoring students in MS and PhD programs. His experience in bridging academic research with practical applications makes him a pivotal figure in energy systems, particularly in oil, gas, and renewable energy technologies. Dr. Tomomewo’s work focuses on optimizing energy systems, covering everything from conventional resources to the development of unconventional oil and gas assets, with an emphasis on advancing the clean energy supply chain.

Publication Achievements 📚

Dr. Tomomewo has made substantial contributions to the scientific community, publishing extensively in peer-reviewed journals and presenting at international conferences. His research primarily revolves around energy sustainability, particularly the decarbonization of the energy sector. Some of his most notable works address hypersaline oil and gas wastewater management, the extraction processes of Lithium-Ion, and the emerging field of geological storage of hydrogen and carbon dioxide. These groundbreaking publications are widely recognized in academic and industry circles and have garnered citations in respected databases like Scopus and Google Scholar.

Ongoing Research 🔬

Dr. Tomomewo’s ongoing research tackles some of the most pressing issues in energy sustainability. His projects focus on optimizing renewable technologies, including geothermal energy, and advancing the storage techniques for hydrogen and carbon dioxide to aid decarbonization efforts. He is particularly interested in hypersaline wastewater management from oil and gas operations, an area that poses significant environmental challenges. In addition, his research includes exploring efficient Lithium-Ion extraction processes, which are critical for the growing demand for battery storage technologies in renewable energy applications.

Research Interests 🌍

  • Energy Systems Optimization: Focusing on both conventional and renewable energy systems, he seeks to improve efficiency while reducing environmental impacts.
  • Geothermal Energy: He explores the development and optimization of geothermal energy technologies, which hold the potential for a clean and sustainable energy future.
  • Unconventional Oil & Gas Assets Development: Investigating innovative techniques for the responsible development of unconventional energy resources.
  • Geological Storage of Hydrogen & Carbon Dioxide: His work in this area aims to mitigate carbon emissions through advanced storage techniques.
  • Hypersaline Oil & Gas Wastewater Management: Dr. Tomomewo is committed to finding sustainable solutions to manage and treat the byproducts of oil and gas operations.

Academic Background 🎓

Dr. Tomomewo’s impressive academic background is built on a strong foundation in both engineering and business. He earned his Ph.D. in Energy Engineering from the University of North Dakota in 2021, further solidifying his expertise in the field. He also holds a Master of Engineering in Energy Systems Engineering from the same institution (2020), equipping him with a comprehensive understanding of complex energy systems. Additionally, Dr. Tomomewo has a Master of Business Administration from the University of Port Harcourt Business School (2013), and a Master of Science in Energy Technology & Management from the University of Ibadan (2011). His academic journey began with a Bachelor of Science in Mechanical Engineering from the University of Ibadan (2006), which laid the groundwork for his deep knowledge of engineering principles.

Scholarships and Awards 🏆

Throughout his academic and professional journey, Dr. Tomomewo has received numerous accolades, scholarships, and awards, recognizing his contributions to the field of energy engineering. These honors not only highlight his technical expertise but also his commitment to advancing research in energy sustainability.

Bioinformatics & Computational Techniques 💻

In addition to his hands-on experience with energy systems, Dr. Tomomewo employs bioinformatics and computational techniques in his research. His work with data analysis and simulation tools helps to model energy systems, allowing for a more efficient optimization of resources. By integrating bioinformatics into energy research, Dr. Tomomewo is able to bridge traditional engineering methods with advanced digital technologies.

Professional Associations 👥

As an active member of various professional organizations, Dr. Tomomewo continues to contribute to the broader energy and engineering communities. He is affiliated with several prestigious bodies, including the Project Management Institute (PMP), Certified Business Analysis Professional (CBAP), and Engineers in Training (EIT). These memberships provide him with platforms to engage in collaborative research and stay abreast of the latest industry trends.

Training & Workshops 📚

Dr. Tomomewo frequently participates in and organizes workshops and training sessions related to energy sustainability. These events cover topics such as renewable energy technologies, energy system optimization, and project management, ensuring that both students and professionals are equipped with the latest knowledge in the field. His dedication to continuous learning and skill development is evident in his active involvement in these capacity-building initiatives.

Oral Presentations 🎤

Dr. Tomomewo has presented his research at several national and international conferences, where he has been lauded for his ability to communicate complex technical ideas in an accessible manner. His oral presentations cover a range of topics, from advanced wastewater management techniques to the future of decarbonization through hydrogen storage.

Tasks Completed as a Researcher 🧪

In his capacity as a researcher, Dr. Tomomewo has successfully completed numerous projects that have made tangible contributions to the field of energy engineering. His work has led to the development of innovative technologies for managing oil and gas byproducts, and his findings in geothermal and hydrogen storage have paved the way for new research in clean energy.

Success Factors 🔑

Dr. Tomomewo attributes his success to a combination of technical expertise, interdisciplinary collaboration, and a deep passion for sustainable energy. His ability to translate academic research into practical applications is one of his most significant strengths, as is his commitment to mentorship and leadership in the academic community.

Publications & Laboratory Experience 🧪

Dr. Tomomewo has extensive laboratory experience, particularly in the areas of geothermal energy, hypersaline wastewater treatment, and carbon dioxide storage. His hands-on research has led to several high-impact publications, which have garnered international attention. His work not only contributes to the academic discourse on energy sustainability but also provides solutions to real-world energy challenges.

📖Publications:

Paper Title: Experimental investigation of zwitterionic surfactant for enhanced oil recovery in unconventional reservoir: A study in the middle bakken formation

  • Authors: Oguntade, T.I., Fadairo, A.S., Pu, H., Tomomewo, O.S., Nkok, L.Y.
  • Journal: Colloids and Surfaces A: Physicochemical and Engineering Aspects
  • Year: 2024

Paper Title: A comprehensive analysis of repurposing abandoned oil wells for different energy uses: Exploration, applications, and repurposing challenges

  • Authors: Meenakshisundaram, A., Tomomewo, O.S., Aimen, L., Bade, S.O.
  • Journal: Cleaner Engineering and Technology
  • Year: 2024

Paper Title: A review of underground hydrogen storage systems: Current status, modeling approaches, challenges, and future prospective

  • Authors: Bade, S.O., Taiwo, K., Ndulue, U.F., Tomomewo, O.S., Aisosa Oni, B.
  • Journal: International Journal of Hydrogen Energy
  • Year: 2024

Paper Title: Carbon neutrality and hydrogen energy systems

  • Authors: Evro, S., Oni, B.A., Tomomewo, O.S.
  • Journal: International Journal of Hydrogen Energy
  • Year: 2024

Paper Title: A review of governance strategies, policy measures, and regulatory framework for hydrogen energy in the United States

  • Authors: Bade, S.O., Tomomewo, O.S.
  • Journal: International Journal of Hydrogen Energy
  • Year: 2024

 

Kulsoom Koser | Fiber Reinforcement in Composites | Women Researcher Award

Ms. Kulsoom Koser | Fiber Reinforcement in Composites | Women Researcher Award

Jamia Millia Islamia, India

Profile:

🎓Early Academic Pursuits

Kulsoom Koser’s academic journey began with a solid foundation in her early education, culminating in her completion of secondary and higher secondary schooling. Demonstrating a keen interest in the sciences, she pursued a Bachelor’s degree in Chemistry, laying the groundwork for her future research endeavors. Her dedication to the field of chemistry was further solidified through her Master’s in Chemistry, where she honed her skills and deepened her understanding of chemical principles.

Currently, Kulsoom is advancing her academic pursuits by working towards a Ph.D. in Chemistry. This stage of her education marks a significant commitment to exploring and contributing to the field of chemical research. Her ongoing doctoral studies reflect her dedication to pushing the boundaries of knowledge and making meaningful contributions to the scientific community.

🏢Professional Endeavors

Kulsoom Koser’s professional career reflects a strong commitment to research and development. Her work experience includes a position at Freshner, where she applied her chemical expertise to practical challenges. This role provided her with valuable industry experience and an opportunity to apply her academic knowledge in a real-world setting.

In addition to her professional experience, Kulsoom has been involved in various research activities. Her research endeavors focus on advancing the field of chemistry, with a particular interest in exploring innovative solutions and methodologies. As a researcher, she has contributed to the scientific community through her studies and ongoing Ph.D. research, which aims to address complex problems and advance understanding in her field.

🔬Contributions and Research Focus

Koser’s research work is characterized by a focus on advancing chemical science and its applications. Her contributions include exploring new chemical compounds, studying their properties, and developing methodologies to utilize them effectively. Her research is guided by a desire to make meaningful contributions to the field, with an emphasis on practical applications that can address real-world problems.

During her Master’s program, Kulsoom engaged in significant research projects that showcased her ability to conduct detailed chemical analyses and experiments. Her work involved examining various chemical processes and their potential applications, demonstrating her capacity to contribute valuable insights to the field of chemistry.

🏆Accolades and Recognition

While Kulsoom is still in the early stages of her research career, her dedication and hard work have been acknowledged through her academic and professional achievements. Her commitment to advancing her field is evidenced by her pursuit of a Ph.D., which reflects her ambition and determination to excel in chemical research.

Though she is in the process of establishing her reputation in the scientific community, Kulsoom’s academic qualifications and work experience serve as a testament to her potential and promise as a researcher. Her involvement in ongoing research projects and her role in the industry further highlight her capabilities and commitment to making a significant impact.

🌍Impact and Influence

Koser’s research has the potential to influence both academic and practical applications in the field of chemistry. Her focus on innovative chemical processes and methodologies positions her to contribute to advancements in various areas, including industrial applications and scientific understanding. By addressing complex chemical problems and developing new solutions, she aims to make a meaningful impact on the field and contribute to the advancement of knowledge.

🌟Legacy and Future Contributions

As Kulsoom Koser continues her journey in the field of chemistry, her future contributions are anticipated to play a significant role in shaping the direction of chemical research. Her dedication to her Ph.D. studies and her ongoing professional development reflect her commitment to making lasting contributions to the field.

Looking ahead, Kulsoom’s goal is to build on her research and professional experiences to achieve new heights in her career. Her aspirations include continuing to explore innovative chemical solutions, collaborating with other researchers, and contributing to the scientific community through impactful research. Her potential to make significant contributions to the field of chemistry positions her as a promising researcher with the ability to influence future advancements.

Koser’s journey, marked by her early academic pursuits, professional endeavors, and ongoing research, illustrates her dedication to advancing chemical science and her potential to make a meaningful impact in her field. As she progresses in her career, her contributions are expected to shape the future of chemical research and provide valuable insights into the applications of chemistry.

📖Publications:

Paper Title: Physico-chemical and antifungal studies of spun cotton thread reinforced cellulose film

  • Authors: Koser, K., Bhat, A.A., Manzoor, N., Ahmedi, S., Hashmi, A.A.
  • Journal: International Journal of Biological Macromolecules
  • Year: 2024

Paper Title: Latest Developments in Commercial Scale Fabrications for Chemically Modified Carbon Nanotubes

  • Authors: Bhat, S.I., Mobin, M., Islam, S., Aslam, R., Zehra, S.
  • Journal: Chemically Modified Carbon Nanotubes for Commercial Applications
  • Year: 2022

Paper Title: Chemically Modified Carbon Nanotubes and Sustainability

  • Authors: Bhat, S.I., Mobin, M., Islam, S., Aslam, R., Zehra, S.
  • Journal: Chemically Modified Carbon Nanotubes for Commercial Applications
  • Year: 2022

Paper Title: Understanding how the substituents of polysaccharides influence physical properties

  • Authors: Aggarwal, S., Koser, K., Chakravarty, A., Ikram, S.
  • Journal: Innovation in Nano-polysaccharides for Eco-sustainability: From Science to Industrial Applications
  • Year: 2021