Jialin Liu | Applications of FRPs in Construction | Best Researcher Award

Assoc Prof Dr. Jialin Liu | Applications of FRPs in Construction | Best Researcher Award

Associate Professor at Southeast University, China

Profile:

Current Position 🏢

Dr. Jialin Liu is an esteemed Associate Professor at the School of Civil Engineering, Southeast University, China. Known for his expertise in structural mechanics and advanced construction materials, Dr. Liu is pivotal in fostering innovation and mentoring the next generation of civil engineers. His role encompasses teaching, research, and collaboration on projects that address real-world engineering challenges.

Publication Achievements 📖

Dr. Liu has an impressive portfolio of peer-reviewed publications in high-impact journals. His research primarily focuses on Fiber-Reinforced Polymers (FRPs) in construction and the integration of polymer and cementitious composites. Notable among his works are contributions that enhance the understanding of structural mechanics and material resilience. These publications not only advance academic knowledge but also provide practical insights for the construction industry.

Ongoing Research 🔬

Currently, Dr. Liu is spearheading multiple research projects aimed at improving sustainability and efficiency in construction. His work explores innovative uses of FRPs to create lightweight, durable structures that reduce environmental impact. In addition, his investigations into polymer/cementitious composites focus on optimizing material performance under varying structural stresses, offering new solutions to modern engineering problems.

Research Interests 📊

Dr. Liu’s diverse research interests reflect his commitment to advancing civil engineering:

  • Applications of FRPs in construction: Developing materials that enhance structural integrity while reducing costs.
  • Polymer/cementitious composites: Investigating hybrid materials for strength, durability, and eco-friendliness.
  • Structural mechanics: Analyzing the behavior of materials under load to predict and improve performance.

Academic Background 🎓

  • Ph.D. (2023): City University of Hong Kong – A pivotal period that honed his expertise in construction materials and structural analysis.
  • Master’s Degree (2019): Huazhong University of Science and Technology – Focused on applied research in civil engineering.
  • Bachelor’s Degree (2016): Huazhong University of Science and Technology – Laid the foundation for his remarkable career in engineering.

Scholarships and Awards 🥇

Dr. Liu’s contributions have been recognized through several accolades, including research grants and academic awards. These honors underline his commitment to excellence and his role as a leader in civil engineering.

Bioinformatics and Computational Techniques 💻

While his primary focus remains on physical materials and structures, Dr. Liu integrates bioinformatics-inspired analytical methods to model and optimize material performance. These computational techniques enhance precision in structural simulations and material behavior predictions.

Professional Associations and Memberships 🤝

Dr. Liu actively participates in professional societies, contributing to global discussions on innovative materials and sustainable construction practices. These memberships allow him to stay at the forefront of research and foster international collaborations.

Training and Workshops 🛠️

Throughout his career, Dr. Liu has attended and organized numerous workshops focusing on advanced construction materials and FRP technologies. His involvement in these events underscores his dedication to knowledge dissemination and professional development.

Oral Presentations 🎤

Dr. Liu is a sought-after speaker at international conferences, where he shares his findings on FRPs and polymer/cementitious composites. His presentations are highly regarded for their clarity and practical implications, earning him recognition as a thought leader in his field.

Tasks Completed as a Researcher ✅

  • Developed experimental protocols for testing composite materials.
  • Collaborated on projects to design sustainable infrastructure.
  • Mentored students and early-career researchers, fostering a culture of innovation.

Success Factors 🚀

  • Interdisciplinary collaboration: Partnering with experts across fields.
  • Innovative mindset: Continuously seeking novel solutions to engineering challenges.
  • Resilience: Tackling complex problems with determination and creativity.

Laboratory Experience 🏗️

Dr. Liu’s laboratory work involves rigorous testing of new materials and their structural applications. His hands-on approach ensures that theoretical research translates into practical benefits. His publications serve as a vital resource for engineers and researchers, bridging the gap between theory and application.

📖Publications:

Paper Title: Thermal and mechanical analysis of thermal break structure in balcony with basalt fiber reinforced polymer

  • Authors: Cao, Y., Wang, X., Ding, L., Liu, X., Wu, Z.
  • Journal: Journal of Building Engineering
  • Year: 2024

Paper Title: Enhancement of pin-bearing behavior of pultruded FRP profiles by multi-directional fiber architecture design

  • Authors: Zhang, L., Wang, X., Liu, J., Liu, X., Wu, Z.
  • Journal: Polymer Composites
  • Year: 2024

 

 

Debin Wang | Fiber Reinforcement in Composites | Best Researcher Award

Assoc Prof Dr. Debin Wang | Fiber Reinforcement in Composites | Best Researcher Award

Professor at Dalian Jiaotong University, China

Profile:

Current Position🌟

De-bin Wang serves as an Associate Professor at Dalian Jiaotong University, where he contributes significantly to the fields of structural seismic resistance and earthquake engineering. With his strong foundation in structural engineering, he specializes in innovative solutions that enhance infrastructure resilience, particularly in seismic-prone regions. His role as an educator and researcher allows him to guide students while driving forward projects in structural dynamics and earthquake-resistant design.

Academic Background📚

Dr. Wang holds a PhD from Dalian University of Technology, earned in 2013, where he developed a solid academic foundation in civil and structural engineering. Following his doctorate, he began his teaching and research career at Dalian Jiaotong University. His background emphasizes earthquake engineering, where he has conducted extensive studies on seismic-resistant structures, a field in which he continues to expand his expertise and make noteworthy contributions.

Scholarships and Awards🏆

Over his career, Dr. Wang has earned multiple awards, reflecting his commitment and expertise in his field. He has received recognition for his contributions to seismic research and his role as a leader in innovative earthquake-resistant technologies. These accolades underscore his dedication to research excellence and pioneering solutions in structural engineering.

Ongoing Research Projects🔍

Dr. Wang is currently leading two significant research projects focusing on seismic performance and structural collapse dynamics:

National Natural Science Foundation Youth Program: This project, titled “Research on Seismic Performance and Asymmetric Structural Collapse Process of Reinforced Concrete Columns under Composite Dynamic Loads,” explores how various dynamic loads influence reinforced concrete columns’ stability during seismic events. The project aims to improve our understanding of structural resilience and inform safer building practices.

Liaoning Provincial Department of Education General Project: This project investigates “The Collapse Process of Bridge Structures Considering Bridge Pier Corrosion and Dynamic Effects.” By examining corrosion’s effects on bridge integrity, this research addresses long-term durability and seismic safety in aging infrastructure.

Consultancy and Industry Projects📜

Dr. Wang actively collaborates with industry leaders on projects that bring his research into practical application:

  • China Railway No.3 Engineering Group Co., Ltd.: Dr. Wang is consulting on the seismic performance of prefabricated concrete bridge pier connections, a project designed to enhance the stability of bridge structures.
  • Institute of Disaster Prevention: Here, he focuses on developing self-centering energy-dissipating braces for bridges, adding an extra layer of protection against seismic forces.

These industry projects highlight his commitment to ensuring that his research positively impacts infrastructure safety and resilience.

Research Interests🔬

Dr. Wang’s research interests center around earthquake engineering, seismic resistance, energy dissipation in structures, and structural health monitoring. His work has led to innovative dampers and seismic resistance mechanisms aimed at protecting infrastructure from earthquakes. His contributions to earthquake-resistant technologies showcase his vision of safer, more resilient urban spaces.

Professional Associations🧑‍🔬

As a recognized expert, Dr. Wang is actively involved in professional organizations related to structural and earthquake engineering. His memberships help him stay connected with other professionals and researchers, promoting collaboration and knowledge-sharing that strengthen his research output and industry impact.

Training & Workshops🎓

Throughout his career, Dr. Wang has participated in various workshops and training programs. These sessions cover topics such as advanced earthquake engineering, new seismic technologies, and structural health monitoring, keeping him updated with the latest trends and methodologies.

Oral Presentations📢

Dr. Wang frequently presents his findings at conferences and symposia where he shares insights into self-centering systems and damping technologies for earthquake resilience. His presentations attract the attention of both academic and industry professionals interested in adopting innovative structural solutions to improve safety in seismic zones.

Tasks Completed as a Researcher🏅

As a lead researcher, Dr. Wang has successfully completed multiple tasks, including:

  • Overseeing extensive field tests on seismic-resilient materials.
  • Developing simulation models for earthquake-induced stress analysis in structures.
  • Authoring comprehensive reports for government and industry stakeholders on seismic risk mitigation.

These accomplishments reflect his dedication to thorough, impactful research.

Success Factors🌱

Dr. Wang attributes his success to a strong foundation in structural engineering principles and a persistent drive to address real-world challenges through innovation. His work ethic, collaborative spirit, and ability to translate research into tangible industry solutions make him a valued contributor to the field.

Publications & Laboratory Experience📊

Dr. Wang’s laboratory experience encompasses a wide array of structural tests, from material durability analysis to seismic simulations that examine structural behavior under earthquake conditions. His lab-based findings directly contribute to the publications and patents he has secured, illustrating his approach to rigorous, data-driven research that informs his innovative solutions in seismic resilience.

📖Publications:

Paper Title: Experimental and Analytical Investigation on the Behavior of Deformation-Amplified Torsional Steel-Tube Dampers

  • Authors: Wang, D.-B., Wang, S.-H., Sun, Z.-G., Wang, W.-M.
  • Journal: Journal of Constructional Steel Research
  • Year: 2025

Paper Title: Study on the mechanical properties of a viscoelastic self-centering brace with rotational displacement amplification and its application in RC frames

  • Authors: Wang, D., Pang, R., Fan, G., Wang, G.
  • Journal: Journal of Building Engineering
  • Year: 2024

Paper Title: Performance Tests of Rotating-Amplification Type Friction Self-Centering Brace and Its Restoring Force Model Verification

  • Authors: Wang, D., Zhang, X., Fu, X., Wang, W., Liu, L.
  • Journal: Zhendong yu Chongji/Journal of Vibration and Shock
  • Year: 2024

Paper Title: Study on Seismic Performance of Exterior Reinforced Concrete Beam-Column Joint Under Variable Loading Speeds or Axial Forces

  • Authors: Fan, G., Xiang, W., Wang, D., Dou, Z., Tang, X.
  • Journal: Earthquake and Structures
  • Year: 2024

Paper Title: Research on the Mechanical Model and Hysteresis Performance of a New Mild Steel-Rotational Friction Hybrid Self-Centering Damper

  • Authors: Wang, D., Pang, R., Wang, G., Fan, G.
  • Journal: Materials
  • Year: 2023

 

Adisak Guntida | Composite Materials Science | Best Researcher Award

Dr. Adisak Guntida | Composite Materials Science | Best Researcher Award

Doctorate at Laboratoire Catalyse & Spectrochimie, France

Profile:

📝Summary

Born on January 6, 1989, Adisak Guntida is a Thai chemical engineer whose innovative research has earned him recognition in both academia and industry. Currently residing in Caen, France, Adisak is at the forefront of chemical engineering research, with a focus on catalysis and sustainable processes.

🎓 Educational Background

Adisak’s academic journey began at King Mongkut’s Institute of Technology Ladkrabang in Bangkok, Thailand, where he earned a B.Eng. in Chemical Engineering in 2011. His passion for catalysis and reaction engineering led him to pursue further studies at Chulalongkorn University, Bangkok. There, he completed his M.Eng. in Chemical Engineering in 2015, followed by a Ph.D. in 2020. His doctoral thesis focused on the transformation of propane to ethylene and butene using tandem catalysis—a project that demonstrated his ability to optimize catalytic processes and minimize side reactions.

💼 Professional Experience

Adisak’s professional career is marked by a series of prestigious postdoctoral research positions. Since 2023, he has been working as a Postdoctoral Researcher at Laboratoire Catalyse & Spectrochimie (LCS), UMR ENSICAEN-Unicaen-CNRS in Caen, France, under the supervision of Assoc. Prof. Karine Thomas and CNRS Research Director Françoise Maugé. His work focuses on developing advanced spectroscopic methods to study solid-liquid interfaces during catalytic reactions. His previous postdoctoral positions include research on titanium-incorporated SBA-15 catalysts for oxidative desulfurization and biomass conversion into high-value products.

Adisak’s research has taken him to the University of California, Davis, where he worked as a Visiting Researcher under the supervision of Prof. Bruce C. Gates. There, he contributed to the synthesis and characterization of novel platinum catalysts, further solidifying his expertise in catalysis.

Before embarking on his research career, Adisak gained industrial experience as a Chemical Engineer in the R&D Unit at Ajinomoto Co., Ltd, in Samut Prakan, Thailand. He provided technical support for various processes, honing his skills in experimental design and problem-solving.

🏆 Fellowships and Awards

Adisak has been the recipient of several prestigious fellowships, including:

  • Institut Carnot ESP Fund for Postdoctoral Fellowship (2023-2024)
  • Dielix by Sarpi-Veolia Fund for Postdoctoral Fellowship (2022-2023)
  • Ratchadapisek Somphot Fund for Postdoctoral Fellowship (2021-2022)
  • Franco-Thai Mobility Programme/PHC SIAM for Visiting Researcher (2021-2022)
  • SCG Chemicals Scholarship for PhD and Master’s Studies (2013-2020)

🌐 Memberships and Collaborations

Adisak is an active member of the Catalysts and Reaction Engineering Association of Thailand and the Council of Engineers Thailand. His collaborative spirit has led to partnerships with leading researchers and institutions, including CNRS Research Director Françoise Maugé, Prof. Piyasan Praserthdam at Chulalongkorn University, and Prof. Bruce C. Gates at the University of California, Davis.

📚 Major Publications and Conferences

Adisak’s research contributions have been published in several high-impact journals. Some of his notable works include studies on catalytic oxidative desulfurization, the hydrogenation of CO and CO2, and methyl stearate ketonization. He has also presented his research at internationally established conferences, such as the International Congress on Catalysis (ICC 2024) in Lyon, France, and the European Federation of Catalysis Societies (EuropaCat-2023) in Prague, Czech Republic.

🌍 Impact and Future Directions

Adisak Guntida’s work in chemical engineering, particularly in catalysis and sustainable processes, continues to push the boundaries of what is possible. His dedication to improving catalytic systems for environmental and industrial applications highlights his commitment to a more sustainable future. As he continues his research, Adisak remains a key figure in the field, contributing to innovations that have the potential to transform the industry.

📚Legacy and Future Contributions

Looking ahead, Adisak Guntida’s legacy in chemical engineering and catalysis is poised to grow even further. His dedication to advancing the field through innovative research and collaboration sets a strong foundation for future contributions. As he continues to explore new frontiers in catalysis and sustainable energy, Adisak’s work will likely inspire future generations of researchers and engineers.

📖Publications:

Paper Title:Catalytic oxidative desulfurization of liquid fuel: Impact of oxidants, extracting agents, and heterogeneous catalysts with prospects for biodiesel upgrading-A mini review

  • Authors: A. Guntida, D.S.S. Jorqueira, C. Nikitine, P. Fongarland, K. Thomas, F. Maugé
  • Journal: Biomass and Bioenergy
  • Year: 2024

Paper Title: Atomically dispersed metals on well-defined supports including zeolites and metal–organic frameworks: Structure, bonding, reactivity, and catalysis

  • Authors: M. Babucci, A. Guntida, B.C. Gates
  • Journal: Chemical Reviews
  • Year: 2020

Paper Title: Lewis acid transformation to Bronsted acid sites over supported tungsten oxide catalysts containing different surface WOx structures

  • Authors: A. Guntida, K. Suriye, J. Panpranot, P. Praserthdam
  • Journal: Catalysis Today
  • Year: 2020

Paper Title: Comparative Study of Lewis Acid Transformation on Non-reducible and Reducible Oxides Under Hydrogen Atmosphere by In Situ DRIFTS of Adsorbed NH3

  • Authors: A. Guntida, K. Suriye, J. Panpranot, P. Praserthdam
  • Journal: Topics in Catalysis
  • Year: 2018

Paper Title: Acidic nanomaterials (TiO 2, ZrO 2, and Al 2 O 3) are coke storage components that reduce the deactivation of the Pt–Sn/γ-Al 2 O 3 catalyst in propane dehydrogenation

  • Authors: A. Guntida, S. Wannakao, P. Praserthdam, J. Panpranot
  • Journal: Catalysis Science & Technology
  • Year: 2020