Fangyin Dai | Natural Fibers | Best Innovation Award

Prof Dr. Fangyin Dai | Natural Fibers | Best Innovation Award

Southwest University, China

Profiles:

Current Position📘

Professor Fangyin Dai is a distinguished researcher and professor at Southwest University in Chongqing, China. Renowned for his profound contributions to the fields of silkworm genetics, biomaterials, and gene functional studies, Prof. Dai’s work has laid the groundwork for advancements in biotechnological applications. His academic journey has been marked by a focus on understanding silkworm resources, exploring genetic mapping, and the functional characterization of mutant genes. This focus on biomaterials is an extension of his expertise in silkworm genetics, making him a leading figure in both genetics and innovative material sciences.

Publication Achievements and Recognition 📚

Prof. Dai’s publishing record is prolific, with over 400 research papers in top-tier journals, including Science, Nature Biotechnology, and Nature Communications. His contributions have garnered a citation index of 5627, an H-index of 27, and a G-index of 73, reflecting his extensive impact on the fields of biology, genetics, and biomaterials. His research has opened new pathways in functional genomics, enabling other researchers to explore and build upon his findings, especially in silkworm biology.

Research Projects and Innovations 🔬

Throughout his career, Prof. Dai has spearheaded more than 30 research projects, many under China’s prestigious National 863 Program and the National Natural Science Foundation. Notably, he developed the world’s largest gene bank for silkworms. His genetic studies have led to groundbreaking discoveries of 35 new mutant types of silkworms, each providing unique insights into traits associated with color, body shape, and development. His commitment to innovation in biomaterials has also led to the development of five new silkworm varieties, pushing the boundaries of functional and structural biology.

Ongoing Research: Genetic Mutations and Biomaterial Applications 🧬

Prof. Dai’s current work emphasizes the genetic mapping and cloning of silkworm traits, with an interest in the molecular basis of specific mutations. His lab’s ongoing research focuses on identifying the molecular mechanisms that drive physical and behavioral traits in silkworms, revealing insights that benefit not only genetics but also the development of silk-based biomaterials. As a result, his research contributes directly to fields such as textile engineering and medical biomaterials.

Contributions to Silkworm Breeding and Genetic Resources 🌱

A notable achievement of Prof. Dai is his work in creating breeding materials and new silkworm varieties. By carefully studying and documenting the inheritance and linkage of silkworm traits, he developed methods to engineer traits like pigmentation and resilience. His successful deciphering of critical silkworm genes has made it possible to produce biomaterials tailored for specific functions, whether for stronger textiles or biodegradable materials in medicine. His expertise has made significant strides in sustainable biomaterials by harnessing natural resources.

Scholarships and Awards 🥇

Prof. Dai has received several prestigious awards for his pioneering work, though details of specific honors were not provided. His achievements have been recognized by leading institutions and societies focused on biomaterials, genetics, and applied biology.

Professional Associations and Editorial Roles 🏅

As a respected figure in biomaterial research and genetics, Prof. Dai is a member of several professional organizations related to biology and biomaterials. His work has led him to collaborate with other prominent researchers worldwide, especially in projects focused on genetic modification and application of silk-based materials in medical fields. He also serves as an editorial member of leading scientific journals, offering his expertise in genetics and biomaterials to guide the future of academic publications.

Training & Workshops and Bioinformatics Contributions 💻

Prof. Dai has been active in training upcoming scientists in genetics and biomaterials. Through workshops and academic programs, he introduces students and researchers to cutting-edge techniques in bioinformatics and silkworm gene mapping. His bioinformatics expertise enables him to analyze complex genetic information, accelerating discoveries and improving understanding of biomaterial applications.

Oral Presentations and Conferences 🎤

Known for his engaging presentations, Prof. Dai regularly participates in international conferences where he shares his findings on genetic mutations in silkworms and their implications for biomaterials. His talks focus on the applied genetics of silkworms, covering both the scientific details of his research and its practical applications in the materials sciences.

Success Factors and Publications 📜

Prof. Dai’s success stems from his commitment to scientific excellence and innovation. His work is rooted in collaborative research, as seen in his project with international colleagues to map silkworm genes. His dedication to expanding the applications of his findings is also evident in his numerous publications, where he details breakthroughs in silk-based biomaterials and genetically engineered silkworms. The comprehensive resources he has developed are invaluable for further research, and his numerous publications document these achievements, serving as critical references for other researchers in the field.

Key Projects and Laboratory Experience 🔍

In addition to his genetic research, Prof. Dai’s laboratory is equipped with state-of-the-art technology for the study of silkworm biomaterials. He has led projects that investigate the structural and functional aspects of these materials, with applications that extend from biomedicine to sustainable textiles. His team’s laboratory work, which focuses on replicating natural materials, is at the forefront of biomaterial research.

Vision and Future Prospects 🌎

With a commitment to pushing the boundaries of genetics and biomaterials, Prof. Dai continues to influence these fields profoundly. His work in silkworm biomaterials and genetic mapping contributes to both the understanding of biological processes and the development of sustainable technologies. His legacy is one of innovation, bridging genetics with practical applications and paving the way for the next generation of biomaterials.

📖Publications:

Paper Title: PupaNet: A versatile and efficient silkworm pupae (Bombyx mori) identification tool for sericulture breeding based on near-infrared spectroscopy and deep transfer learning

  • Authors: He, H., Huang, H., Zhu, S., Dai, F., Zhao, T.
  • Journal: Computers and Electronics in Agriculture
  • Year: 2024

Paper Title: Cuproptosis-based layer-by-layer silk fibroin nanoplatform-loaded PD-L1 siRNA combining photothermal and chemodynamic therapy against metastatic breast cancer

  • Authors: Li, Z., Cheng, L., Xu, X., Xiao, B., Dai, F.
  • Journal: Materials Today Bio
  • Year: 2024

Paper Title: QTL analysis to identify genes involved in the trade-off between silk protein synthesis and larva-pupa transition in silkworms

  • Authors: Gao, R., Li, C., Zhou, A., Tong, X., Dai, F.
  • Journal: Genetics Selection Evolution
  • Year: 2024

Paper Title: FOXO-regulated OSER1 reduces oxidative stress and extends lifespan in multiple species

  • Authors: Song, J., Li, Z., Zhou, L., Rasmussen, L.J., Dai, F.
  • Journal: Nature Communications
  • Year: 2024

Paper Title: Flat silk cocoons: A candidate material for fabricating lightweight and impact-resistant composites

  • Authors: Shao, J., Liu, Y., Hou, Z., Dai, F., Cheng, L.
  • Journal: International Journal of Biological Macromolecules
  • Year: 2024

 

Rui Wen | Natural Fibers | Best Researcher Award

Assist Prof Dr. Rui Wen | Natural Fibers | Best Researcher Award

Wenzhou Medical University, China

Profiles:

Current Position 🌟

Rui Wen is currently an Assistant Professor at Wenzhou Medical University, where he is actively engaged in cutting-edge research on biomaterials. He focuses primarily on studying the functional properties of silk proteins and the synthesis of artificial spider silk fibers with advanced mechanical attributes. His work bridges the fields of biomaterials and bioengineering, positioning him as a promising figure in materials science and biotechnology.

Publication Achievements 📚

With a strong foundation in biomaterials research, Rui Wen has contributed significantly to the field through numerous high-impact publications. As the first author or corresponding author, he has published 11 peer-reviewed papers in prestigious journals, including the International Journal of Biological Macromolecules, Acta Biomaterialia, and ACS Biomaterials Science & Engineering. His publications address the functional aspects of spider silk proteins and the synthesis of artificial silk fibers, advancing both the scientific understanding and application potential of silk-based materials.

Ongoing Research and Innovations 🔬

Rui Wen’s research currently focuses on two main aspects of spider silk. First, he conducts in-depth analyses of spider silk protein compositions, aiming to uncover the natural mechanisms that give spider silk its remarkable mechanical properties. This understanding forms the basis for synthetic replication in lab settings. Second, he explores artificial spider silk production, concentrating on enhancing the extensibility and strength of the fibers. His recent work demonstrated that by adjusting the molecular weight of spider silk proteins, it is possible to create synthetic fibers with properties exceeding those of natural spider silk. This advancement lays the groundwork for future applications in high-performance materials.

Research Interests 🧬

Rui Wen’s research interests span the biomimetic study of spider silk proteins, the molecular synthesis of silk-based materials, and bioengineering applications for high-strength fibers. His work explores both the natural composition of spider silk proteins and their synthetic adaptation to improve properties like tensile strength, elasticity, and durability. This interdisciplinary focus positions his research at the intersection of biotechnology, materials science, and engineering.

Academic Background 🎓

Rui Wen received his Ph.D. in Biomaterials from Donghua University in 2020. His academic journey has been shaped by an interest in biomimicry and the pursuit of sustainable, high-performance materials. His foundational studies laid the groundwork for his subsequent research on artificial spider silk, a field where he continues to push boundaries.

Collaborations and Professional Network 🤝

Collaboration is central to Rui Wen’s research. In partnership with Professor Xiangqin Liu at Dalhousie University, he made a breakthrough in spider silk research, co-authoring a paper that introduced the first full-length coding gene for wrapped silk protein in China. This finding, published in International Journal of Biological Macromolecules in 2018, represents a critical contribution to the genetic understanding of spider silk and has furthered his professional reputation. He also maintains professional connections with colleagues Xue Li, Kangkang Wang, Suyang Wang, and Qing Meng, contributing to a network that fosters innovation in biomaterials.

Editorial Appointments and Review Responsibilities 📝

Rui Wen’s editorial and review roles reflect his expertise in biomaterials. He serves on the editorial board of the World Journal of Biological Chemistry and the Young Editorial Board for Biomedical Engineering Communications. Additionally, he acts as an invited reviewer for the International Journal of Biological Macromolecules. These positions allow him to shape the discourse in biomaterials and bioengineering while staying updated on the latest scientific advancements.

Professional Associations and Memberships 🏛️

Rui Wen is actively engaged with the scientific community through his memberships in professional associations alongside prominent researchers such as Xue Li and Kangkang Wang. These affiliations support his commitment to collaborative research and knowledge sharing within the biomaterials field.

Training, Workshops, and Oral Presentations 🎤

Throughout his career, Rui Wen has participated in workshops and conferences focused on materials science, biomimetics, and spider silk research. His presentations have contributed to the broader understanding of silk protein synthesis and fiber properties. These opportunities have enabled him to refine his expertise, exchange ideas with other experts, and enhance the visibility of his work.

Key Contributions to Biomimetic Research 🌍

Rui Wen’s contributions to biomimetic research are centered on unraveling the complexities of spider silk proteins. By systematically studying the molecular composition of spider wrapping silk fibers, he has identified key proteins that contribute to the material’s exceptional properties. His insights into the protein composition and molecular weight relationships have been instrumental in developing high-performance synthetic fibers that may one day be applied in various fields, from medicine to aerospace.

Success Factors and Research Milestones 🏆

Rui Wen attributes his success to a disciplined approach to research, continuous learning, and collaborative engagement. His landmark achievements, including the genetic analysis of spider silk proteins and the development of artificial silk fibers with improved extensibility, mark important milestones in the field of biomaterials. His work has garnered attention for its potential to revolutionize sustainable material synthesis.

Publications and Laboratory Experience 🧪

With over 16 publications in SCI-indexed and Scopus journals, Rui Wen’s scholarly output reflects a high level of scientific rigor. His laboratory experience encompasses advanced techniques in protein characterization, gene sequencing, and fiber synthesis. In the lab, he works with state-of-the-art equipment to explore the biomimetic applications of silk proteins and innovate synthetic fiber production.

Sustainable Silk-Based Materials 🌱

Looking ahead, Rui Wen envisions a future where artificial spider silk fibers play a role in sustainable development. His ongoing research on silk protein functions and fiber synthesis holds promise for reducing the environmental impact of synthetic materials. Through continuous innovation, he aims to create sustainable materials that meet the demands of modern industries while preserving natural resources.

📖Publications:

Paper Title: Physical Properties of the Second Type of Aciniform Spidroin (AcSp2) from Neoscona theisi Reveal a pH-Dependent Self-Assembly Repetitive Domain

  • Authors: Yang, D., Wang, S., Wang, K., Zan, X., Wen, R.
  • Journal: ACS Biomaterials Science and Engineering
  • Year: 2023

Paper Title: Complete gene sequence and mechanical property of the fourth type of major ampullate silk protein

  • Authors: Wen, R., Wang, S., Wang, K., Zan, X., Meng, Q.
  • Journal: Acta Biomaterialia
  • Year: 2023

Paper Title: Characterization of two full-length tubuliform silk gene sequences from Neoscona theisi reveals intragenic concerted evolution and multiple copies in genome

  • Authors: Wen, R., Wang, K., Zan, X.
  • Journal: International Journal of Biological Macromolecules
  • Year: 2022

Paper Title: Characterization of two full-length Araneus ventricosus major ampullate silk protein genes

  • Authors: Wen, R., Yang, D., Wang, K., Zan, X.
  • Journal: International Journal of Biological Macromolecules
  • Year: 2022

Paper Title: The novel aciniform silk protein (AcSp2-v2) reveals the unique repetitive domain with high acid and thermal stability and self-assembly capability

  • Authors:Wen, R., Wang, K., Yang, D., Zan, X., Meng, Q.
  • Journal: International Journal of Biological Macromolecules
  • Year: 2022