Valeria Pettarin | Composite Materials Science | Best Researcher Award

Prof. Dr Valeria Pettarin | Composite Materials Science | Best Researcher Award

Professor – Researcher at Institute of Materials Science and Technology / University of Mar del Plata, Argentina

Valeria Pettarin is an accomplished materials scientist specializing in polymer science and engineering. She has held various prestigious academic and research positions, including serving as the Director of the Materials Engineering Department at the University of Mar del Plata. With a strong background in material mechanics, fracture behavior, and sustainable polymer applications, she has significantly contributed to advancing polymer composites and recycled materials. Her extensive research collaborations span multiple countries, reflecting her international influence in the field.

profile

scopus

Education

Valeria Pettarin obtained her degree in Materials Engineering from the University of Mar del Plata in 1998. She further pursued her passion for materials science by earning a Doctorate in Materials Science from the same university in 2002. Throughout her academic journey, she has engaged in research exchanges at prestigious institutions, enhancing her expertise in polymer mechanics, fracture analysis, and sustainable materials.

Experience

Dr. Pettarin’s professional career is marked by her contributions as an academic and researcher. She began as a doctoral fellow at CONICET and later became a postdoctoral fellow, continuing her research in polymer engineering. She has served as an independent researcher at the National Research Council (CONICET) and as Vice-Director of the Polymer Science and Engineering Group at INTEMA. Additionally, she has held visiting professorships at multiple institutions, furthering international collaboration in materials science research.

Research Interests

Her research interests lie in the mechanical, fracture, and impact performance of polymers and their composites, particularly emphasizing the microstructural effects induced by processing techniques. She is also dedicated to sustainable polymer applications, including recycling massively used polymer-based packaging and optimizing polymer composites for enhanced performance. Her work integrates experimental mechanics, material characterization, and innovative polymer processing techniques.

Awards

Dr. Pettarin has received multiple accolades for her contributions to materials science and engineering. She has been recognized for her excellence in polymer research and her commitment to sustainable material development. Her work has been instrumental in bridging academia and industry, leading to technological advancements and industrial collaborations in polymer composites.

Publications

Pettarin, V., Frontini, P.M., Eliçabe, G. (2004). “Inverse Analysis of Impact Test Data: Experimental Study on Polymeric Materials Displaying Brittle Behavior.” Mechanics of Time-Dependent Materials, 8(3), 269-288. Cited by 50+ articles.

Pettarin, V., Fasce, L.A., Frontini, P.M. (2003). “Evaluation of Impact Fracture Toughness of Polymeric Materials by Means of the J-integral Approach.” Polymer Engineering & Science, 43(5), 1081-1095. Cited by 100+ articles.

Pettarin, V., Costantino, A., Rosales, C. (2020). “Polypropylene Blends and Composites: Processing-Morphology-Performance Relationship of Injected Pieces.” IntechOpen. Cited by 30+ articles.

Pettarin, V., Rosales, C., Aït Hocine, N. (2023). “Toughness Improvement of LLDPE/PP Blend by Incorporation of GTR Waste.” Polymer Bulletin. Cited by 20+ articles.

Pettarin, V., Morales, F., Campos, G. (2024). “On the Challenge of Recycling Massively Used Polymer-Based Packaging.” CRC Press. Cited by 15+ articles.

Pettarin, V., Ramirez, C., Agaliotis, E. (2024). “Fracture Toughness and Overall Characterization of PLA-Based Biocomposites with Natural Fibers.” Polymer, 307, 127309. Cited by 10+ articles.

Pettarin, V., Campos, G., Sáiz, L. (2024). “Self-Healing Recyclable Polymers Based on Azobenzenes with Thermoset-like Behavior.” Polymer, 290, 126560. Cited by 12+ articles.

Conclusion

Dr. Valeria Pettarin’s exceptional contributions to materials science, leadership in academia, commitment to sustainability, and impact on global research make her an ideal candidate for the Best Researcher Award. Her work not only advances scientific knowledge but also fosters innovation and environmental responsibility in engineering.

Mostafa Hassani Niaki | Polymer concrete | Best Researcher Award

Dr. Mostafa Hassani Niaki | Polymer concrete | Best Researcher Award

Research associate at University of Mazandaran, Iran

Dr. Mostafa Hassani Niaki is a distinguished researcher and mechanical engineer specializing in applied design, composites, and polymer concrete. With a strong foundation in mechanical engineering, he has contributed extensively to material characterization, deep learning applications in composites, and the development of high-strength construction materials. His research integrates artificial intelligence with experimental mechanics, enhancing the understanding of polymer composites and nanocomposites.

profile

scopus

Education

Dr. Niaki earned his Ph.D. in Mechanical Engineering (Applied Design) from Semnan University in 2017, focusing on the synthesis and mechanical improvement of polymer concrete composites with nanomaterials. He completed his M.S. at Islamic Azad University of Semnan, where he optimized and designed a novel micro/nano gripper. His B.S. in Mechanical Engineering (Solid Mechanics) was obtained from the University of Mazandaran, where he analyzed artificial knee mechanisms.

Experience

Dr. Niaki currently serves as a Research Associate at Mazandaran University, focusing on advanced mechanical materials and AI applications in composites. He is the Managing Director of Teb Gostar Daris, overseeing the development of innovative mechanical solutions. His previous roles include Planning Manager at Atipay Medical Co. and Sales Manager at Nam-Avaran Atieh Salamat, where he contributed to strategic development and product innovation in the medical and engineering sectors.

Research Interests

His research explores artificial intelligence in composite materials, particularly deep neural networks for predicting mechanical properties. He specializes in polymer and nanocomposite reinforcement, optimizing mechanical and thermal characteristics. His expertise extends to experimental mechanics, MEMS, and mechanical design, integrating CAD and finite element analysis to advance structural composites and micro-actuation technologies.

Awards & Recognitions

Dr. Niaki has received an Elsevier Certificate of Reviewing for his contributions to the Journal of Building Engineering, a Q1 journal with a high impact factor. He holds multiple technical certifications, including ISO 9001:2008 and SolidWorks Mechanical Design. His research has influenced industrial applications, earning recognition for innovation in polymer concrete and fracture mechanics.

Publications

Dr. Niaki has authored numerous high-impact journal articles and a book on advanced polymer concretes. Below are some of his key publications:

Niaki, M. H. (2024). “Implementation of Deep Learning Method to Determine Dimensionless Values of Stress Intensity Factors and T-Stress of ENDB Specimen.” Fatigue & Fracture of Engineering Materials & Structures.

Niaki, M. H., Moghadasi, R., Ramzali, M. (2024). “Mechanical and Electronic Behavior of TMDC Nanotubes and Monolayers: Molecular Simulations.” Molecular Simulation/Journal of Experimental Nanoscience.

Niaki, M. H., Abedi, S. H., Ahangari, M. G. (2024). “Mechanical, Thermal, and Morphological Studies of POSS Reinforced PA6/NBR Composites.” Polymer-Plastics Technology and Materials.

Niaki, M. H., Aghdam, A. A. (2023). “Effect of Basalt Fibers on Fracture Properties of Nanoclay Reinforced Polymer Concrete After Elevated Temperatures.” Journal of Building Engineering.

Niaki, M. H., Pashaian, M. (2023). “Predicting Geometry Factors and Normalized T‐Stress of Cracked Disk Specimens Using Deep Learning.” Fatigue & Fracture of Engineering Materials & Structures.

Niaki, M. H., Ahangari, M. G., Pashaian, M. (2023). “Experimental Assessment of Deep Learning in Predicting Mechanical Properties of Polymer Composites.” Journal of Building Engineering.

Niaki, M. H. (2022). “A Material-Independent Deep Learning Model to Predict the Tensile Strength of Polymer Concrete.” Composites Communications.

Conclusion

Dr. Mostafa Hassani Niaki is a highly accomplished researcher whose work in mechanical engineering, materials science, and artificial intelligence applications in composites has had a significant impact. His extensive publication record, innovative research, academic mentorship, and industrial contributions make him a deserving candidate for the Best Researcher Award. His contributions continue to push the boundaries of engineering and materials science, making him a worthy recipient of this prestigious recognition.