Deepak Poddar | Composite Materials Science | Best Researcher Award

Dr. Deepak Poddar | Composite Materials Science | Best Researcher Award

Doctorate at Indian Institute of Technology, India

Profile:

🎓 Current Position

Dr. Deepak Poddar currently serves as a Research Associate at the prestigious Indian Institute of Technology, Delhi (IIT Delhi). His role involves the development of paper-based food packaging materials, along with supervising M.Tech major thesis project work (MTP). His expertise in polymeric materials and sustainable technologies makes him a key contributor to cutting-edge research in polymer science and biomaterials.

📚 Publication Achievements

Dr. Poddar is a prolific researcher with an impressive portfolio of 10 journal articles and 6 book chapters published in reputed scientific outlets. These publications reflect his deep understanding of polymeric materials, biosensors, and biomaterials for tissue engineering. His work has significantly contributed to interdisciplinary research, providing innovative solutions to modern scientific challenges.

🔬 Ongoing Research

Dr. Poddar is actively engaged in groundbreaking projects that span diverse domains of polymer science and materials chemistry

Development of Electrochemical Biosensors for Stress Detection: Pioneering novel technologies to monitor stress levels.

Synthesis of Interstitial Doped MoSe₂ TMDC for Photocatalysis (under Prof. Anjana Sarkar): Exploring advanced materials for renewable energy and catalytic applications.

Reduced Metal Immobilized Polymeric Particles for Water Remediation (Ph.D. project at NSUT, Dwarka): Innovating solutions for environmental pollution control.

🧪 Research Interests

Biomaterials and Tissue Engineering: Special focus on porous polymeric scaffolds for bone tissue applications.

Polymeric Biosensors: Advancing diagnostic tools for stress detection.

Photocatalysis and Water Remediation: Leveraging polymer-metal composites for sustainable solutions.

Green Chemistry and Sustainable Technologies: Championing environmentally friendly approaches in material development.

🎓 Academic Background

Dr. Poddar has a robust academic foundation in Polymer Science and Technology with a specialization in biomaterials. His academic journey  Ph.D.: Fabrication of bi-facial porous polymeric scaffolds for bone tissue engineering applications (NSUT, Dwarka). M.Sc.: Advanced studies in polymer chemistry and material characterization.

🏆 Scholarships and Awards

  • Secured prestigious fellowships during his Ph.D. and teaching tenure at NSUT, Dwarka.
  • Recognition for innovative research contributions in polymeric materials and biomaterials.

🧬 Bioinformatics and Computational Tools

While his expertise is primarily rooted in experimental polymer science, Dr. Poddar has also utilized computational techniques to understand material properties and predict outcomes, integrating bioinformatics tools to enhance material designs.

🏛️ Professional Associations

Dr. Poddar actively collaborates with reputed institutions and professional bodies, fostering research synergies in polymer science and biomaterials.

🛠️ Training and Workshops

Dr. Poddar’s hands-on expertise stems from extensive training programs,

Functionalization of carbon nanomaterials (Graphene, Graphene oxide, CNTs) at Kumaun University, Uttarakhand.

Development of polymeric adhesives at Sri Ram Panels Pvt. Ltd. and Vin Poly Technologies.

Advanced workshops on polymer processing and characterization at leading institutes.

🎤 Oral Presentations

Dr. Poddar has delivered impactful presentations on biomaterials and biosensors at various national and international conferences, showcasing his ability to communicate complex ideas effectively.

Tasks Completed as a Researcher

Development of eco-friendly packaging solutions at IIT Delhi.

Mentorship of students and project supervision at NSUT, Dwarka.

Comprehensive report writing and market analysis for polymeric products during his tenure as a Research Assistant.

🌟 Success Factors

Interdisciplinary Expertise: Bridging diverse fields of polymer science, chemistry, and biomaterials.

Innovative Approach: Developing novel materials for environmental and biomedical applications.

Target Orientation: Delivering impactful results under tight timelines.

🧪 Laboratory Experience

Synthesis and characterization of polymeric scaffolds and biosensors.

Development of reduced metal-immobilized polymer particles for water treatment.

Photocatalytic materials synthesis for sustainable energy solutions.

🚀 Legacy and Future Goals

Pioneer next-gen polymeric materials for healthcare and sustainability.

Lead multidisciplinary teams to address critical challenges in biomaterials and green chemistry.

Continue contributing to the global scientific community through impactful research and collaborations.

📖Publications:

Paper Title: Development of electrosprayed assisted shellac-MOF particle coated paper for food packaging and its environmental impacts

  • Authors: Poddar, D., Pandey, K., Kim, S.-J., Yoo, H.M.
  • Journal: Sustainable Materials and Technologies
  • Year: 2024

Paper Title: Vanadium pentoxide-based nanomaterials for the treatment of dye-containing wastewater to avoid negative effects on the environment and human health

  • Authors: Bansal, S., Singh, A., Poddar, D., Jain, P.
  • Journal: Sustainable Environment and Health: Practical Strategies
  • Year: 2024

Paper Title: In-situ fabrication of poly-l-lactide & its application as a glass fiber polymer composite using resin transfer molding

  • Authors: Kim, S.-J., Pandey, K., Poddar, D., Yoo, H.M.
  • Journal: Polymer Composites
  • Year: 2024

Paper Title: Borophene-Based Materials for Gas and Wearable Sensing Applications

  • Authors: Kumar, S., Kashyap, S., Ansari, U., Sarkar, A., Poddar, D.
  • Journal: Engineering Materials
  • Year: 2024

Paper Title: Boron-Based Two-Dimensional Nanosheets in Energy Devices

  • Authors: Ansari, U., Kashyap, S., Kumar, S., Poddar, D., Singh, A.
  • Journal: Engineering Materials
  • Year: 2024

 

 

Mukhlis A Rahman | Composite Materials Science | FRP Academic Excellence Award

Assoc Prof Dr. Mukhlis A Rahman | Composite Materials Science | FRP Academic Excellence Award

University Teknologi Malaysia, Malaysia

Profiles:

🏛️Current Position

Dr. Mukhlis bin A Rahman is a renowned professor at the Department of Energy Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), where he specializes in ceramic membranes and microporous materials for fluid separation. His work is pivotal in developing sustainable energy solutions. Dr. Mukhlis is also actively involved in teaching, mentoring students, and spearheading research initiatives that align with global energy needs.

🔬 Ongoing Research

Dr. Mukhlis is currently engaged in cutting-edge research on the application of ceramic membranes in fluid separation processes. His ongoing projects focus on enhancing the efficiency of microporous materials to improve separation and purification processes, which have widespread applications in industries such as water treatment, gas separation, and fuel cells. He is also exploring novel photocatalytic reactors for organic wastewater treatment, further extending his research to environmental sustainability.

🔎 Research Interests

  • Ceramic membranes for fluid separation: Developing advanced materials to improve separation processes in various industrial applications.
  • Microporous materials: Investigating new porous materials that can enhance separation efficiency.
  • Photocatalytic reactors: Exploring innovative solutions for the treatment of organic pollutants in wastewater.

His expertise extends to both theoretical and applied aspects of chemical engineering, particularly in membrane technology and its applications.

🎓 Academic Background

Dr. Mukhlis’ academic journey began with a Bachelor’s degree in Chemical Engineering from Universiti Teknologi Malaysia (UTM), completed in 2004. He later pursued a Master’s degree in Chemical Engineering (Gas) at UTM, finishing in 2006. His thirst for knowledge led him to Imperial College London, where he completed his Ph.D. in Chemical Engineering in 2011. This strong academic foundation has provided him with the expertise to contribute significantly to chemical and energy engineering fields.

🏅 Scholarships and Awards

Dr. Mukhlis has been the recipient of numerous prestigious awards throughout his career. 

  • 15 international awards, including recognition for his work on SPEEK-Nanoclay membranes.
  • 8 national awards, underscoring his contributions to Malaysia’s scientific and academic landscape.
  • 26 UTM awards, reflecting his excellence in research and teaching.
  • 5 faculty awards for his dedicated service to the Faculty of Chemical and Energy Engineering.

Notable honors include the Best of the Best Award and Gold Medal at PECIPTA 2013, as well as several Excellent Service Awards from UTM.

🧬 Bioinformatics Contributions

Although Dr. Mukhlis’ primary focus is on chemical engineering, his interdisciplinary approach has led him to explore bioinformatics applications, particularly in materials science and fluid dynamics. By incorporating computational models, he enhances the predictive power of his research on membrane technology.

👥 Professional Associations

Dr. Mukhlis is an active member of several professional associations, both national and international. His involvement in these organizations not only allows him to collaborate with other experts but also to stay updated on the latest advancements in his field.

🛠️ Training & Workshops

Throughout his career, Dr. Mukhlis has participated in various workshops and training sessions, contributing to his professional development. These programs have allowed him to refine his skills in advanced chemical engineering techniques, and he frequently shares his expertise by organizing and leading similar workshops for students and professionals.

🎤 Oral Presentations

Dr. Mukhlis has delivered numerous presentations at international conferences, sharing his insights on ceramic membranes and microporous materials. His engaging and informative talks have made him a sought-after speaker in the global chemical engineering community.

📝 Tasks Completed as a Researcher

Dr. Mukhlis has successfully completed several high-impact research projects. His work on developing novel ceramic membranes and photocatalytic reactors has advanced fluid separation processes. His projects often involve cross-disciplinary collaboration, reflecting his ability to work at the intersection of engineering, chemistry, and environmental science.

🌟 Success Factors

Dr. Mukhlis attributes his success to a combination of rigorous academic training, a passion for innovation, and a commitment to excellence. His ability to stay ahead of industry trends and his interdisciplinary approach have allowed him to make groundbreaking contributions to membrane technology.

🔬 Publications & Laboratory Experience

Dr. Mukhlis has an extensive list of publications in high-impact journals. His research is often cited by fellow academics, further solidifying his position as a leader in his field. His laboratory experience is equally impressive, having overseen numerous experiments that have led to the development of innovative materials for fluid separation.

📖Publications:

Paper Title: Effect of capillary pressure on the CO2 flux in the pores of membrane contactor: Theory and simulation results

  • Authors: Ahmad, S.N.A., Matsuura, T., Jaafar, J., Othman, M.H.D., A Rahman, M.
  • Journal: Chemical Engineering Research and Design
  • Year: 2023

Paper Title: Tailoring surface structure and diameter of etched fiber Bragg grating for high strain sensing

  • Authors: Koo, K.N., Ismail, A.F., Othman, M.H.D., A Rahman, M., Samavati, A.
  • Journal: Optics and Laser Technology
  • Year: 2023

Paper Title: Self-cleaning and anti-fouling superhydrophobic hierarchical ceramic surface synthesized from hydrothermal and fluorination methods

  • Authors: Abd Aziz, M.H., Othman, M.H.D., Tavares, J.R., A Rahman, M., Jaafar, J.
  • Journal: Applied Surface Science
  • Year: 2022

Paper Title: Adsorptive Membrane for Boron Removal: Challenges and Future Prospects

  • Authors: Mehanathan, S., Jaafar, J., Nasir, A.M., Bilad, M.R., Naseer, M.N.
  • Journal: Membranes
  • Year: 2022

Paper Title: A review of the potential of conventional and advanced membrane technology in the removal of pathogens from wastewater

  • Authors: Nasir, A.M., Adam, M.R., Mohamad Kamal, S.N.E.A., A Rahman, M., Wan Salleh, W.N.
  • Journal: Separation and Purification Technology
  • Year: 2022

 

Adisak Guntida | Composite Materials Science | Best Researcher Award

Dr. Adisak Guntida | Composite Materials Science | Best Researcher Award

Doctorate at Laboratoire Catalyse & Spectrochimie, France

Profile:

📝Summary

Born on January 6, 1989, Adisak Guntida is a Thai chemical engineer whose innovative research has earned him recognition in both academia and industry. Currently residing in Caen, France, Adisak is at the forefront of chemical engineering research, with a focus on catalysis and sustainable processes.

🎓 Educational Background

Adisak’s academic journey began at King Mongkut’s Institute of Technology Ladkrabang in Bangkok, Thailand, where he earned a B.Eng. in Chemical Engineering in 2011. His passion for catalysis and reaction engineering led him to pursue further studies at Chulalongkorn University, Bangkok. There, he completed his M.Eng. in Chemical Engineering in 2015, followed by a Ph.D. in 2020. His doctoral thesis focused on the transformation of propane to ethylene and butene using tandem catalysis—a project that demonstrated his ability to optimize catalytic processes and minimize side reactions.

💼 Professional Experience

Adisak’s professional career is marked by a series of prestigious postdoctoral research positions. Since 2023, he has been working as a Postdoctoral Researcher at Laboratoire Catalyse & Spectrochimie (LCS), UMR ENSICAEN-Unicaen-CNRS in Caen, France, under the supervision of Assoc. Prof. Karine Thomas and CNRS Research Director Françoise Maugé. His work focuses on developing advanced spectroscopic methods to study solid-liquid interfaces during catalytic reactions. His previous postdoctoral positions include research on titanium-incorporated SBA-15 catalysts for oxidative desulfurization and biomass conversion into high-value products.

Adisak’s research has taken him to the University of California, Davis, where he worked as a Visiting Researcher under the supervision of Prof. Bruce C. Gates. There, he contributed to the synthesis and characterization of novel platinum catalysts, further solidifying his expertise in catalysis.

Before embarking on his research career, Adisak gained industrial experience as a Chemical Engineer in the R&D Unit at Ajinomoto Co., Ltd, in Samut Prakan, Thailand. He provided technical support for various processes, honing his skills in experimental design and problem-solving.

🏆 Fellowships and Awards

Adisak has been the recipient of several prestigious fellowships, including:

  • Institut Carnot ESP Fund for Postdoctoral Fellowship (2023-2024)
  • Dielix by Sarpi-Veolia Fund for Postdoctoral Fellowship (2022-2023)
  • Ratchadapisek Somphot Fund for Postdoctoral Fellowship (2021-2022)
  • Franco-Thai Mobility Programme/PHC SIAM for Visiting Researcher (2021-2022)
  • SCG Chemicals Scholarship for PhD and Master’s Studies (2013-2020)

🌐 Memberships and Collaborations

Adisak is an active member of the Catalysts and Reaction Engineering Association of Thailand and the Council of Engineers Thailand. His collaborative spirit has led to partnerships with leading researchers and institutions, including CNRS Research Director Françoise Maugé, Prof. Piyasan Praserthdam at Chulalongkorn University, and Prof. Bruce C. Gates at the University of California, Davis.

📚 Major Publications and Conferences

Adisak’s research contributions have been published in several high-impact journals. Some of his notable works include studies on catalytic oxidative desulfurization, the hydrogenation of CO and CO2, and methyl stearate ketonization. He has also presented his research at internationally established conferences, such as the International Congress on Catalysis (ICC 2024) in Lyon, France, and the European Federation of Catalysis Societies (EuropaCat-2023) in Prague, Czech Republic.

🌍 Impact and Future Directions

Adisak Guntida’s work in chemical engineering, particularly in catalysis and sustainable processes, continues to push the boundaries of what is possible. His dedication to improving catalytic systems for environmental and industrial applications highlights his commitment to a more sustainable future. As he continues his research, Adisak remains a key figure in the field, contributing to innovations that have the potential to transform the industry.

📚Legacy and Future Contributions

Looking ahead, Adisak Guntida’s legacy in chemical engineering and catalysis is poised to grow even further. His dedication to advancing the field through innovative research and collaboration sets a strong foundation for future contributions. As he continues to explore new frontiers in catalysis and sustainable energy, Adisak’s work will likely inspire future generations of researchers and engineers.

📖Publications:

Paper Title:Catalytic oxidative desulfurization of liquid fuel: Impact of oxidants, extracting agents, and heterogeneous catalysts with prospects for biodiesel upgrading-A mini review

  • Authors: A. Guntida, D.S.S. Jorqueira, C. Nikitine, P. Fongarland, K. Thomas, F. Maugé
  • Journal: Biomass and Bioenergy
  • Year: 2024

Paper Title: Atomically dispersed metals on well-defined supports including zeolites and metal–organic frameworks: Structure, bonding, reactivity, and catalysis

  • Authors: M. Babucci, A. Guntida, B.C. Gates
  • Journal: Chemical Reviews
  • Year: 2020

Paper Title: Lewis acid transformation to Bronsted acid sites over supported tungsten oxide catalysts containing different surface WOx structures

  • Authors: A. Guntida, K. Suriye, J. Panpranot, P. Praserthdam
  • Journal: Catalysis Today
  • Year: 2020

Paper Title: Comparative Study of Lewis Acid Transformation on Non-reducible and Reducible Oxides Under Hydrogen Atmosphere by In Situ DRIFTS of Adsorbed NH3

  • Authors: A. Guntida, K. Suriye, J. Panpranot, P. Praserthdam
  • Journal: Topics in Catalysis
  • Year: 2018

Paper Title: Acidic nanomaterials (TiO 2, ZrO 2, and Al 2 O 3) are coke storage components that reduce the deactivation of the Pt–Sn/γ-Al 2 O 3 catalyst in propane dehydrogenation

  • Authors: A. Guntida, S. Wannakao, P. Praserthdam, J. Panpranot
  • Journal: Catalysis Science & Technology
  • Year: 2020