Lei Zhu | Advanced Fiber Technologies | Best Researcher Award

Prof. Lei Zhu | Advanced Fiber Technologies | Best Researcher Award

Professor at Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, China

Profile:

Current Position 🏢

Zhu Lei serves as the esteemed Director and Professor at the Research Center for Phased Array Optics within the Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences. Since July 2021, he has been at the helm of this innovative institute, steering cutting-edge research and fostering advancements in optics, adaptive optics, and laser communication. His leadership continues to enhance the institute’s reputation as a hub of excellence in green and intelligent technology.

Academic Background 🎓

Zhu Lei’s academic journey showcases a solid foundation in science and technology. He earned his bachelor’s degree in Electronic Information Science and Technology (1999-2003) from the prestigious University of Science and Technology of China. Subsequently, he pursued a PhD in Physical Electronics (2003-2008) at the Shanghai Institute of Technical Physics, Chinese Academy of Sciences, demonstrating a keen focus on electronic and optical systems.

Ongoing Research 🔬

Multi-Conjugate Adaptive Optics System Development (2018–2022): Elevating the imaging capabilities of solar telescopes. Advanced Electro-Optical Detection Technology (2021–2023): Innovating next-gen systems for precise detection. Optical and Terahertz Integrated Phased Array Skin Technology (2021–2023): Exploring futuristic optical solutions. These projects aim to revolutionize optics and imaging, particularly in astronomy and high-resolution imaging technologies.

Research Interests 🌌

Adaptive Optics: Optimizing systems for clearer imaging. Phased Array Optics: Innovating in light control and coherence. 3D Photonic Chips: Pioneering advanced photonic architectures. Lidar and Laser Communication: Enhancing long-distance detection and communication technologies. His multidisciplinary interests drive novel advancements in both theoretical and applied optics.

Awards and Honors 🏅

Zhu Lei was recognized as a Young Scholar of Regional Development by the Chinese Academy of Sciences in 2022, a testament to his impact in advancing regional and global scientific goals.

Professional Associations and Training 🤝

Zhu Lei is actively involved in professional organizations, fostering collaboration and knowledge exchange. His leadership in professional associations complements his participation in workshops and advanced training, ensuring his methodologies remain at the cutting edge of technology.

Tasks Completed as a Researcher ✔️

  • Solar High-Resolution Tomography Imaging Technology (2011–2016): Revolutionizing solar observation.
  • Adaptive Optics Imaging for Infrared Solar Towers (2012–2015): Advancing astronomical imaging techniques. His achievements reflect a relentless pursuit of innovation in scientific imaging.

Oral Presentations and Laboratory Excellence 🎤

Zhu Lei has delivered impactful oral presentations at leading conferences, sharing his insights on adaptive optics and phased array systems. His laboratory experience encompasses developing and testing advanced imaging systems, ensuring their reliability and accuracy for real-world applications.

Success Factors and Future Contributions 🚀

Zhu Lei’s success stems from his unwavering dedication, interdisciplinary approach, and collaborative mindset. His work in phased array optics and adaptive imaging not only enhances scientific exploration but also sets a roadmap for future researchers. As a visionary leader, Zhu Lei’s contributions are poised to leave an indelible mark on the field of optics and beyond.

📖Publications:

Paper Title: Femtosecond laser processing with aberration correction based on Shack-Hartmann wavefront sensor

  • Authors: Wang, X.; Zhu, L.; Zhang, Q.; Zhang, L.; Guo, Y.
  • Journal: Optics and Lasers in Engineering
  • Year: 2025

Paper Title: Gravity unloading of a very large spaceborne monolithic SiC mirror

  • Authors: Tian, F.; Zhang, F.; Guo, J.; Zhu, L.; Wang, H.
  • Journal: Applied Optics
  • Year: 2024

Paper Title: Speckle-reduced reconstruction of a single-shot hologram by multiple tip–tilt modulations

  • Authors: Yang, F.; Zhu, L.; Wei, K.; Zhang, Y.; Cao, L.
  • Journal: Applied Optics
  • Year: 2021

Paper Title: High-resolution multiple-aperture holographic imaging system

  • Authors: Yang, F.; Zhu, L.; Wei, K.; Zhang, Y.; Cao, L.
  • Journal: Optics InfoBase Conference Papers
  • Year: 2021

Paper Title: Resolution analysis of distributed holographic aperture imaging system

  • Authors: Feng, Y.; Lei, Z.; Yang, L.; Youming, G.; Yudong, Z.
  • Journal:Laser and Optoelectronics Progress
  • Year: 2021

Conclusion 🚀

Zhu Lei exemplifies the fusion of scientific rigor and visionary leadership. From his academic foundations to his groundbreaking research in adaptive optics and phased arrays, his contributions echo across the domains of astronomy, photonics, and beyond. With a commitment to innovation, Zhu Lei continues to illuminate the path for future advancements in optical technologies.

 

Fangyin Dai | Natural Fibers | Best Innovation Award

Prof Dr. Fangyin Dai | Natural Fibers | Best Innovation Award

Southwest University, China

Profiles:

Current Position📘

Professor Fangyin Dai is a distinguished researcher and professor at Southwest University in Chongqing, China. Renowned for his profound contributions to the fields of silkworm genetics, biomaterials, and gene functional studies, Prof. Dai’s work has laid the groundwork for advancements in biotechnological applications. His academic journey has been marked by a focus on understanding silkworm resources, exploring genetic mapping, and the functional characterization of mutant genes. This focus on biomaterials is an extension of his expertise in silkworm genetics, making him a leading figure in both genetics and innovative material sciences.

Publication Achievements and Recognition 📚

Prof. Dai’s publishing record is prolific, with over 400 research papers in top-tier journals, including Science, Nature Biotechnology, and Nature Communications. His contributions have garnered a citation index of 5627, an H-index of 27, and a G-index of 73, reflecting his extensive impact on the fields of biology, genetics, and biomaterials. His research has opened new pathways in functional genomics, enabling other researchers to explore and build upon his findings, especially in silkworm biology.

Research Projects and Innovations 🔬

Throughout his career, Prof. Dai has spearheaded more than 30 research projects, many under China’s prestigious National 863 Program and the National Natural Science Foundation. Notably, he developed the world’s largest gene bank for silkworms. His genetic studies have led to groundbreaking discoveries of 35 new mutant types of silkworms, each providing unique insights into traits associated with color, body shape, and development. His commitment to innovation in biomaterials has also led to the development of five new silkworm varieties, pushing the boundaries of functional and structural biology.

Ongoing Research: Genetic Mutations and Biomaterial Applications 🧬

Prof. Dai’s current work emphasizes the genetic mapping and cloning of silkworm traits, with an interest in the molecular basis of specific mutations. His lab’s ongoing research focuses on identifying the molecular mechanisms that drive physical and behavioral traits in silkworms, revealing insights that benefit not only genetics but also the development of silk-based biomaterials. As a result, his research contributes directly to fields such as textile engineering and medical biomaterials.

Contributions to Silkworm Breeding and Genetic Resources 🌱

A notable achievement of Prof. Dai is his work in creating breeding materials and new silkworm varieties. By carefully studying and documenting the inheritance and linkage of silkworm traits, he developed methods to engineer traits like pigmentation and resilience. His successful deciphering of critical silkworm genes has made it possible to produce biomaterials tailored for specific functions, whether for stronger textiles or biodegradable materials in medicine. His expertise has made significant strides in sustainable biomaterials by harnessing natural resources.

Scholarships and Awards 🥇

Prof. Dai has received several prestigious awards for his pioneering work, though details of specific honors were not provided. His achievements have been recognized by leading institutions and societies focused on biomaterials, genetics, and applied biology.

Professional Associations and Editorial Roles 🏅

As a respected figure in biomaterial research and genetics, Prof. Dai is a member of several professional organizations related to biology and biomaterials. His work has led him to collaborate with other prominent researchers worldwide, especially in projects focused on genetic modification and application of silk-based materials in medical fields. He also serves as an editorial member of leading scientific journals, offering his expertise in genetics and biomaterials to guide the future of academic publications.

Training & Workshops and Bioinformatics Contributions 💻

Prof. Dai has been active in training upcoming scientists in genetics and biomaterials. Through workshops and academic programs, he introduces students and researchers to cutting-edge techniques in bioinformatics and silkworm gene mapping. His bioinformatics expertise enables him to analyze complex genetic information, accelerating discoveries and improving understanding of biomaterial applications.

Oral Presentations and Conferences 🎤

Known for his engaging presentations, Prof. Dai regularly participates in international conferences where he shares his findings on genetic mutations in silkworms and their implications for biomaterials. His talks focus on the applied genetics of silkworms, covering both the scientific details of his research and its practical applications in the materials sciences.

Success Factors and Publications 📜

Prof. Dai’s success stems from his commitment to scientific excellence and innovation. His work is rooted in collaborative research, as seen in his project with international colleagues to map silkworm genes. His dedication to expanding the applications of his findings is also evident in his numerous publications, where he details breakthroughs in silk-based biomaterials and genetically engineered silkworms. The comprehensive resources he has developed are invaluable for further research, and his numerous publications document these achievements, serving as critical references for other researchers in the field.

Key Projects and Laboratory Experience 🔍

In addition to his genetic research, Prof. Dai’s laboratory is equipped with state-of-the-art technology for the study of silkworm biomaterials. He has led projects that investigate the structural and functional aspects of these materials, with applications that extend from biomedicine to sustainable textiles. His team’s laboratory work, which focuses on replicating natural materials, is at the forefront of biomaterial research.

Vision and Future Prospects 🌎

With a commitment to pushing the boundaries of genetics and biomaterials, Prof. Dai continues to influence these fields profoundly. His work in silkworm biomaterials and genetic mapping contributes to both the understanding of biological processes and the development of sustainable technologies. His legacy is one of innovation, bridging genetics with practical applications and paving the way for the next generation of biomaterials.

📖Publications:

Paper Title: PupaNet: A versatile and efficient silkworm pupae (Bombyx mori) identification tool for sericulture breeding based on near-infrared spectroscopy and deep transfer learning

  • Authors: He, H., Huang, H., Zhu, S., Dai, F., Zhao, T.
  • Journal: Computers and Electronics in Agriculture
  • Year: 2024

Paper Title: Cuproptosis-based layer-by-layer silk fibroin nanoplatform-loaded PD-L1 siRNA combining photothermal and chemodynamic therapy against metastatic breast cancer

  • Authors: Li, Z., Cheng, L., Xu, X., Xiao, B., Dai, F.
  • Journal: Materials Today Bio
  • Year: 2024

Paper Title: QTL analysis to identify genes involved in the trade-off between silk protein synthesis and larva-pupa transition in silkworms

  • Authors: Gao, R., Li, C., Zhou, A., Tong, X., Dai, F.
  • Journal: Genetics Selection Evolution
  • Year: 2024

Paper Title: FOXO-regulated OSER1 reduces oxidative stress and extends lifespan in multiple species

  • Authors: Song, J., Li, Z., Zhou, L., Rasmussen, L.J., Dai, F.
  • Journal: Nature Communications
  • Year: 2024

Paper Title: Flat silk cocoons: A candidate material for fabricating lightweight and impact-resistant composites

  • Authors: Shao, J., Liu, Y., Hou, Z., Dai, F., Cheng, L.
  • Journal: International Journal of Biological Macromolecules
  • Year: 2024