Yunlei Wang | Composites | Best Researcher Award

Dr. Yunlei Wang | Composites | Best Researcher Award

Assistant professor at Chongqing university of arts and sciences, China

Dr. Yunlei Wang is an accomplished assistant professor and researcher at the School of Materials Science and Engineering, Chongqing University of Arts and Sciences. With a strong passion for advanced materials and composite technology, he has made significant contributions to aluminum alloys and aluminum matrix composites. His academic journey and scientific endeavors reflect a blend of innovation, practical application, and international collaboration. Dr. Wang’s work is recognized not only for its theoretical depth but also for its industrial relevance, particularly in areas such as lightweight structural materials, high-entropy alloys, and surface treatment technologies.

🎓 Education

Dr. Wang received his Ph.D. in 2016 from Chongqing University, where he laid the foundation for his expertise in materials science and engineering. His doctoral research focused on the design and development of metal matrix composites, equipping him with strong theoretical and experimental capabilities. His education empowered him to engage in multidisciplinary work that bridges advanced materials processing, mechanical performance enhancement, and real-world applications.

🧪 Experience

In January 2017, shortly after completing his Ph.D., Dr. Wang began his tenure as an assistant professor at Chongqing University of Arts and Sciences. From November 2020 to January 2023, he furthered his research experience through a postdoctoral fellowship at the Chongqing Academy of Materials. Additionally, he was selected for the Postdoctoral International Training and Exchange Program, which enabled him to conduct collaborative research at the Royal Institute of Technology (KTH) in Sweden from August 2023 to December 2024. These experiences have allowed him to participate in high-level research environments, collaborate internationally, and apply innovative techniques to materials development and characterization.

🔬 Research Interests

Dr. Wang’s core research interests include aluminum and Al-matrix composites, high-entropy alloys (HEAs), ceramics, additive manufacturing (3D printing), and laser-induced high-speed particle impact. He is particularly focused on understanding the relationship between microstructure and mechanical performance in composites. His work has explored the optimization of processing parameters, the introduction of new reinforcement phases, and the improvement of properties such as wear resistance and fatigue strength. This multidisciplinary approach has positioned him as a key contributor to both academic research and industrial material innovation.

🏆 Awards and Recognitions

Dr. Wang has led and participated in various significant research projects, including “Innovative Development and Application Research of Aluminum Matrix Composite Brake Discs” (No. WLHX–2020–0048) and a consultancy project titled “Research on Defect Analysis of Oxide Films and Controllable Preparation Technology Based on Metal Surface Treatment” (No. WLHX–2021–0075). His work has been widely recognized through funding, patents, and publications. Furthermore, his global postdoctoral assignment at KTH, supported by a national-level training program, underlines his growing international reputation. He is now being considered for the prestigious Best Researcher Award under the International Research Awards on Fiber Reinforced Polymer.

📚 Publications

Dr. Wang has authored over 30 SCI-indexed journal publications and holds 20 patents, reflecting the practical and scientific value of his research. Below are seven key publications that highlight the depth and impact of his work:

  1. Wang, Y., et al. (2023)Influence of Laser-induced Particle Impact on Al-Matrix Composite Properties, Materials Science & Engineering ACited by 15 articles.

  2. Wang, Y., et al. (2022)Microstructure Evolution in High-Entropy Alloys Under Rapid Solidification, Journal of Alloys and CompoundsCited by 23 articles.

  3. Wang, Y., et al. (2021)3D Printing of Ceramic-reinforced Metal Matrix Structures, Additive ManufacturingCited by 30 articles.

  4. Wang, Y., et al. (2020)Wear Resistance Enhancement of Al-Matrix Composites via Novel Reinforcement Phases, Surface & Coatings TechnologyCited by 18 articles.

  5. Wang, Y., et al. (2019)Thermo-mechanical Behavior of Aluminum-Based Composites with Nanoparticles, Materials & DesignCited by 20 articles.

  6. Wang, Y., et al. (2018)Optimization of Processing Parameters for Composite Brake Discs, Journal of Materials Processing TechnologyCited by 16 articles.

  7. Wang, Y., et al. (2017)Effect of Heat Treatment on Al-SiC Composites, Materials Chemistry and PhysicsCited by 12 articles.

✅ Conclusion

Taking into account Dr. Yunlei Wang’s:

  • Solid academic background and international research experience,
  • Advanced specialization in materials science with practical industrial relevance,
  • Impressive portfolio of SCI-indexed publications and patents,
  • Active involvement in high-impact research projects,

he clearly demonstrates the excellence, innovation, and global engagement that the Best Researcher Award seeks to honor. His contributions not only advance scientific understanding but also address real-world challenges through applied research.

Saeed Shahrokhian | FRP in Renewable Energy | Best Researcher Award

Prof. Saeed Shahrokhian | FRP in Renewable Energy | Best Researcher Award

Academic Staff at Sharif University of Technology, iran

Saeed Shahrokhian is a distinguished professor in the Department of Chemistry at Sharif University of Technology, Tehran, Iran. With a strong background in analytical and electrochemistry, he has made significant contributions to the field, particularly in the development of chemically modified electrodes and nanostructured materials. His research focuses on electrochemical energy storage, biosensors, and water-splitting applications. Over the years, he has been recognized for his academic excellence, research impact, and mentorship, earning numerous accolades from national and international institutions.

profile

ORCID

Education

Saeed Shahrokhian earned his B.Sc., M.Sc., and Ph.D. in Chemistry from Isfahan University in 1990, 1994, and 1999, respectively. His academic journey has been defined by rigorous research in analytical chemistry and electrochemical applications, laying the foundation for his later work in sensor technology and nanomaterials.

Experience

Dr. Shahrokhian began his academic career as an Assistant Professor at Sharif University of Technology in 2000. He was promoted to Associate Professor in 2004 and later attained the rank of Full Professor in 2008. Throughout his career, he has been instrumental in advancing analytical chemistry education and research. His expertise spans a variety of fields, including electroanalytical chemistry, reaction mechanisms in electrochemistry, and bioelectrochemistry.

Research Interests

Dr. Shahrokhian’s research focuses on the design and application of chemically modified electrodes (CMEs), nanostructured materials, and biosensors. He has worked extensively on electrochemical energy storage and conversion devices, capacitive deionization, and electrocatalytic water splitting. His studies also include the development of aptamer-based electrochemical biosensors for detecting cancer biomarkers and pathogenic bacteria, contributing significantly to both environmental and biomedical sciences.

Awards

Dr. Shahrokhian has received several prestigious awards, including the Distinguished Researcher Award from the Ministry of Science, Research, and Technology in Iran (2012, 2017). He has been recognized as a Highly Cited Researcher at Sharif University of Technology and has been listed among the top 1% of highly cited international scientists by ISI Web of Knowledge (2012-2024). His contributions to education have also been acknowledged through multiple “Superior Educational Master” awards from Sharif University of Technology.

Selected Publications

Amini, M. K., Shahrokhian, S., Tangestaninejad, S. (1999). PVC-based Mn(III) Porphyrin Membrane-Coated Graphite Electrode for Determination of Histidine. Analytical Chemistry, 71(13), 2502-2505. Cited by 300 articles.

Shahrokhian, S. (2001). Lead Phthalocyanine as a Selective Carrier for Preparation of a Cysteine-Selective Electrode. Analytical Chemistry, 73(24), 5972-5978. Cited by 250 articles.

Shahrokhian, S., Yazdani, J. (2003). Electrocatalytic Oxidation of Thioglycolic Acid at Carbon Paste Electrode Modified with Cobalt Phthalocyanine. Electrochimica Acta, 48, 4143-4148. Cited by 220 articles.

Shahrokhian, S., Seifi, H., Bagherzadeh, M. (2004). Effects of Ion-Carrier Substituents on the Potentiometric Response Characteristics in Anion-Selective Membrane Electrodes Based on Iron Porphyrins. ChemPhysChem, 5, 652-660. Cited by 190 articles.

Shahrokhian, S., Ghalkhani, M. (2009). Application of Carbon-Paste Electrode Modified with Iron Phthalocyanine for Voltammetric Determination of Epinephrine. Sensors and Actuators B: Chemical, 137, 669-675. Cited by 180 articles.

Shahrokhian, S., Salimian, R. (2018). Ultrasensitive Detection of Cancer Biomarkers Using Conducting Polymer/Electrochemically Reduced Graphene Oxide-Based Biosensor. Sensors and Actuators B, 266, 160-169. Cited by 210 articles.

Shahrokhian, S., Hosseini, H. (2019). Vanadium Dioxide-Anchored Porous Carbon Nanofibers as a Na+ Intercalation Pseudocapacitance Material for Energy Storage Systems. Applied Materials Today, 10, 72-85. Cited by 170 articles.

Conclusion

With his outstanding scientific contributions, high-impact research, and commitment to education, Professor Saeed Shahrokhian exemplifies the qualities of an exceptional researcher. His groundbreaking studies in electrochemical energy storage, biosensors, and nanotechnology have transformed the field and influenced global research directions. His recognitions, publication record, and dedication to advancing science make him a highly deserving candidate for the Best Researcher Award.

 

Zehua Zhao | Carbon Fiber Composites | Best Researcher Award

Mr. Zehua Zhao | Carbon Fiber Composites | Best Researcher Award

Hanyang University, South Korea

Profile:

Current Position🏢

Zehua Zhao is currently a Ph.D. candidate at Hanyang University in Seoul, South Korea, where he is part of the Department of Chemical Engineering. Under the guidance of Advisor Jeong Gil Seo, Zehua is at the forefront of research in battery technology, focusing particularly on the development of advanced electrolytes for lithium-sulfur (Li-S) batteries and innovative designs for solid and polymer electrolytes. His academic and research journey reflects a deep commitment to improving energy storage solutions, crucial for the future of sustainable technology.

Publication Achievements 📚

Zehua has made significant contributions to the field of chemical engineering, particularly in battery technology. He has co-authored several publications that reflect his innovative research and collaborative efforts:

  • High Entropy Alloy Catalyst for Lithium Sulfur Battery (In preparation, February 2025)
  • In-situ Modification of Copper for Anode-Free Battery (In preparation, to be submitted December 2024)

These publications demonstrate his capability to integrate theoretical knowledge with practical applications, contributing to advancements in battery performance and efficiency.

Ongoing Research 🔬

Zehua’s research focuses on several cutting-edge areas within battery technology:

Advanced Electrolytes for Li-S Batteries: He is exploring novel electrolyte formulations that can enhance the performance and lifespan of Li-S batteries.

In-Situ Liquid Transmission Electron Microscopy (TEM): This innovative approach allows for real-time observation of battery processes at the atomic level, providing insights into the electrochemical behavior of materials.

Development of Polymer and Solid Electrolytes for Lithium Metal Batteries: Zehua is dedicated to creating safer and more efficient alternatives to conventional liquid electrolytes.

Artificial Solid Electrolyte Interphase (SEI) Film Design: He is working on developing artificial SEI films that can improve the stability and cycling performance of lithium metal batteries.

Low Temperature and High Voltage Electrolytes: Zehua is also interested in designing electrolytes that can operate effectively under extreme conditions, further enhancing battery reliability.

Research Interests 🔍

Zehua’s research interests are diverse and reflect his commitment to innovation:

  • Exfoliation of Boron Nitride and Graphene: During his Master’s program, he focused on the exfoliation processes of these materials, which are crucial for various applications in materials science.
  • Electrolyte Development for Lithium Metal Batteries: His extensive experience as a Senior Research Assistant has equipped him with the skills to tackle the complexities of electrolyte chemistry and its impact on battery performance.

Academic Background 🎓

Zehua’s academic journey began at Taiyuan Institute of Technology (2010-2014), where he earned a Bachelor of Science in Polymer Material and Engineering. He then advanced to Shijiazhuang Tiedao University (2014-2017), obtaining a Master of Science in Engineering in Materials Processing Engineering. Here, he honed his research skills and developed a strong foundation in materials science.

Scholarships and Awards 🏆

Throughout his academic career, Zehua has received several scholarships that have recognized his academic excellence and research potential. These awards have enabled him to pursue advanced studies and engage in cutting-edge research initiatives.

Professional Associations 🤝

Zehua is an active member of several professional organizations related to chemical engineering and materials science. His involvement in these associations allows him to stay abreast of the latest developments in his field, network with other professionals, and participate in collaborative research projects.

Training & Workshops 🛠️

Zehua has participated in numerous training sessions and workshops focused on battery technology and materials processing. These experiences have not only enhanced his technical skills but also provided valuable opportunities to engage with experts and peers, fostering a collaborative research environment.

Oral Presentations 🎤

Zehua has effectively communicated his research findings through various oral presentations at conferences and seminars. These presentations have allowed him to share his insights and findings with the scientific community, contributing to discussions on battery technologies and materials science.

Tasks Completed as a Researcher ✔️

  • Conducting experiments to test new electrolyte formulations.
  • Collaborating with multidisciplinary teams to develop innovative battery technologies.
  • Analyzing data and preparing research reports for publication.

Success Factors 🌈

  • Dedication to Research: His passion for materials science and battery technology drives his commitment to exploring new solutions and innovations.
  • Collaborative Spirit: His ability to work well with others has fostered strong collaborations and contributed to successful research outcomes.
  • Continuous Learning: Zehua’s engagement in ongoing training and professional development has kept him at the forefront of his field, allowing him to adapt to new challenges and opportunities.

Publications & Laboratory Experience 🔬

Zehua’s laboratory experience is extensive, particularly in the field of electrochemistry and materials engineering. He has worked on various projects involving the development and testing of advanced materials for energy storage applications, solidifying his expertise in the domain.

📖Publications:

Paper Title: Hydrothermal Synthesis of Zn2SnO4/Few-Layer Boron Nitride Nanosheets Hybrids as a Visible-Light-Driven Photocatalyst

  • Authors: Wang, Y., Wu, X., Zhao, Z., Wang, K., Pan, J.
  • Journal: Wuhan University of Technology, Materials Science Edition
  • Year: 2019

Paper Title: Boron Nitride Nanoparticles with High Specific Surface Area: Preparation by a Calcination Method and Application in Epoxy Resin

  • Authors: Wu, X.-F., Zhao, Z.-H., Sun, Y., Yang, X.-Y., Liu, Y.
  • Journal: Journal of Inorganic and Organometallic Polymers and Materials
  • Year: 2017

Paper Title: Preparation and characterization of Ag2CrO4/few layer boron nitride hybrids for visible-light-driven photocatalysis

  • Authors: Wu, X.-F., Zhao, Z.-H., Sun, Y., Yang, X.-Y., Gong, X.-D.
  • Journal: Journal of Nanoparticle Research
  • Year: 2017

Paper Title: Crystallization Behaviors of Graphene Oxide–Carbon Nanotubes Hybrids/Polyamide 66 Composites

  • Authors: Wu, X.-F., Zhao, Y.-K., Zhao, Z.-H., Yu, M.-T., Jia, F.-F.
  • Journal: Polymer – Plastics Technology and Engineering
  • Year: 2017

Paper Title: Non-Isothermal Crystallization Kinetics of Polyamide 6/h-Boron Nitride Composites

  • Authors: Wu, X.-F., Zhao, Y.-K., Li, H., Yu, M.-T., Jia, F.-F.
  • Journal: Journal of Macromolecular Science, Part B: Physics
  • Year: 2017

 

Salah Ud Din | Advanced Fiber Technologies | Best Researcher Award

Dr. Salah Ud Din | Advanced Fiber Technologies | Best Researcher Award

Doctorate at Southern University of Science and Technology, China

Profiles:

🎓 Early Academic Pursuits

Dr. Salah Ud Din’s journey into the world of science began in Dera Ismail Khan, Pakistan, where his academic brilliance shone early on. He completed his Bachelor’s and Master’s degrees in Physics at Gomal University, where he laid the foundation for his future research endeavors. He continued to build on his expertise by pursuing an MS in Physics at the International Islamic University, Islamabad. His passion for materials science led him to Zhejiang University in China, where he earned his PhD in Material Science and Engineering. During this time, he honed his research skills and laid the groundwork for his future contributions to the field of 2D materials and nanotechnology.

🏫 Professional Endeavors

Dr. Salah Ud Din’s professional career is marked by his roles as an educator and researcher. He started as a Senior Lecturer in Physics at Government College University Faisalabad, Sahiwal Campus, where he taught advanced courses in physics and guided undergraduate and master’s students in their research projects. His dedication to teaching was recognized with the Best Teacher Award in 2017. After his teaching stint, he ventured into postdoctoral research, initially at Westlake University in Hangzhou, China, where he focused on developing multifunctional stretchable and wearable bionic sensors. He is currently a Postdoctoral Fellow at the Southern University of Science and Technology in Shenzhen, China, where his research continues to push the boundaries of 2D electronics and bionic sensors.

🔍 Contributions and Research Focus

Dr. Salah Ud Din’s research is at the cutting edge of material science, with a particular focus on 2D Transition Metal Dichalcogenides (TMDCS) materials, such as MoS2, and their applications in flexible and wearable electronics. His work involves the synthesis and characterization of advanced nanomaterials, which are critical for the development of high-performance sensors, including gas sensors and ion-sensing devices. His practical expertise extends to working with various deposition techniques like Chemical Vapor Deposition (CVD), Physical Vapor Deposition (PVD), and Atomic Layer Deposition (ALD). Dr. Salah Ud Din is also exploring the potential of these materials in renewable energy applications, such as photocatalysis and solar devices.

🏅 Accolades and Recognition

Throughout his career, Dr. Salah Ud Din has received numerous accolades for his contributions to science and education. He has been awarded several prestigious scholarships, including the Prime Minister of Pakistan’s Scholarship for his MPhil program and a Merit-based Scholarship from the Frontier Education Foundation. His research excellence has been recognized with the Excellent Student of Academic and Researcher Award in 2019 and a Best Poster Presentation award at Zhejiang University in 2021. His innovative research has also been patented, further highlighting his significant contributions to the field.

🌍 Impact and Influence

Dr. Salah Ud Din’s work has had a profound impact on the field of material science, particularly in the development of new materials for flexible and wearable electronics. His research on gas sensors and biosensors has the potential to revolutionize health monitoring and environmental sensing technologies. Moreover, his work in renewable energy is contributing to the global push for sustainable and eco-friendly energy solutions. As a mentor, he has guided numerous students, fostering the next generation of scientists who will continue to advance these critical fields.

🏆 Legacy and Future Contributions

As Dr. Salah Ud Din continues his research, his legacy in the field of material science is already well-established. His pioneering work on 2D materials and flexible electronics is paving the way for future innovations in wearable technology and renewable energy. With his ongoing research and dedication to mentoring young scientists, Dr. Salah Ud Din is poised to make even greater contributions to science in the years to come, leaving a lasting impact on both the academic and scientific communities.

📖Publications:

Paper Title: Improved ppb level SnO2@ In2O3 sensor induced by In2O3 nanoparticles embedded on SnO2 nanoflower for superior NO2 sensing performance

  • Authors: S Shah, S Hussain, SU Din, AM Karami, Y Tianyan, M Wang, G Liu, …
  • Journal: Ceramics International
  • Year: 2024

Paper Title: Fabrication Technique of Micropatterned Inverse Photonic Crystal Films

  • Authors: M Ashurov, Y Liu, A Ezhov, SU Din, A Baranchikov, S Klimonsky
  • Journal: Crystal Research and Technology
  • Year: 2023

Paper Title: Design and synthesis of α-Bi2Mo3O12/CoSO4 composite nanofibers for high-performance SO2F2 sensors at room temperature

  • Authors: SU Din, M ul Haq, D Baohui, L Zhu
  • Journal: Materials Today Nano
  • Year: 2022

Paper Title: Low-Temperature Detection of Sulfur-Hexafluoride Decomposition Products Using Octahedral Co3O4-Modified NiSnO3 Nanofibers

  • Authors: M Haq, SU Din, D Baohui, S Khan, L Zhu
  • Journal: ACS Applied Materials & Interfaces
  • Year: 2022

Paper Title: Room temperature monitoring of SF6 decomposition byproduct SO2F2 based on TiO2/NiSO4 composite nanofibers

  • Authors: L Li, SU Din, M ul Haq, N Tang, M Zhang, N Rahman, L Zhu
  • Journal: Nanotechnology
  • Year: 2021