Min-Suk Oh | Design and Analysis of FRP Components | Best Researcher Award

Prof. Min-Suk Oh | Design and Analysis of FRP Components | Best Researcher Award

Jeonbuk National University, South Korea

Profile:

Current Position 🏫

Min-Suk Oh currently serves as a Professor in the Division of Advanced Materials Engineering at Jeonbuk National University (JBNU), South Korea. Since joining the institution in 2018, he has focused on pushing the boundaries of material science and engineering, particularly in the areas of metallurgy, surface treatments, and eco-friendly technologies for next-generation vehicles and industrial applications. His work at JBNU is highly interdisciplinary, emphasizing collaborative research projects and partnerships with industry to foster innovation in material development.

Publication Achievements 📚

Professor Oh’s scholarly output is notable in both quality and quantity, with multiple papers published in high-impact journals covering advanced materials, metallurgical engineering, and surface treatment technologies. His research papers reflect his deep expertise in Zn-Mg-Al alloy coatings, corrosion resistance, and steel surface technologies, with his most recent publications addressing the challenges of corrosion resistance in automotive applications and lightweight materials for industrial uses. His contributions in international journals and conferences have established him as a leading figure in the field, influencing not only academic researchers but also industry stakeholders.

Ongoing Research 🔬

Professor Min-Suk Oh is currently leading several innovative research projects that address real-world problems in material science. Key projects include:

Development of CFRP Rollers Using Surface Thermal Spray Coating Technology (2024–2026): This project, supported by the Ministry of Trade, Industry and Energy of South Korea, seeks to advance the production technology for lightweight Carbon Fiber Reinforced Polymer (CFRP) rollers, focusing on creating industrial applications through enhanced surface thermal spray coating technologies.

Development of High Corrosion-Resistant Alloy for Automotive Parts (2022–2025): Funded by the National Research Foundation of Korea (NRF), this project aims to develop next-generation corrosion-resistant alloy coatings that can withstand extreme environmental conditions, making them ideal for use in advanced automotive manufacturing.

Catalytic Ozonation Process for Water Treatment (2022–2025): Sponsored by the Ministry of SMEs and Startups, this project explores innovative methods for water treatment using metal alloy catalysts, offering a low-energy, high-efficiency solution for environmental sustainability.

Research Interests 🌍

Professor Oh’s research primarily focuses on advanced surface treatment technologies, high-strength and lightweight materials, and corrosion-resistant coatings. His specific areas of interest include the development of Zn-Mg-Al alloy coatings for automotive and industrial applications, the design of eco-friendly materials for electric vehicles (EVs), and innovations in catalytic processes for water treatment. His interdisciplinary approach combines material science with engineering, offering practical solutions to industries like automotive manufacturing, construction, and environmental sustainability.

Academic Background 🎓

Professor Oh obtained his Ph.D. in Electronic Materials from the Gwangju Institute of Science and Technology (GIST), South Korea. During his doctoral studies, he worked extensively on compound semiconductor thin films and electronic devices, laying the groundwork for his later research in advanced materials and surface treatments. His academic journey has been marked by a continuous dedication to cutting-edge research, leading to significant industry collaborations and contributions to global material science.

Scholarships and Awards 🏅

Throughout his career, Professor Oh has been recognized with several prestigious awards for his contributions to materials engineering. His research on corrosion-resistant coatings and eco-friendly material technologies has earned him numerous accolades from both academic and industrial organizations. Additionally, his work has been supported by competitive research grants from major funding bodies such as the National Research Foundation of Korea (NRF) and the Ministry of Trade, Industry and Energy.

Bioinformatics & Material Science Integration 💻

In his pursuit of advancing material technologies, Professor Oh has incorporated bioinformatics techniques to better understand the molecular behavior of materials under different conditions. This integration allows him to predict material performance and corrosion resistance more effectively, especially in complex environments like automotive and industrial settings. His pioneering work in the intersection of bioinformatics and materials engineering has opened new avenues for predictive material design.

Professional Associations 🤝

Professor Oh is an active member of several professional organizations, including the Korean Institute of Metals and Materials (KIM) and the International Society for Advanced Materials (ISAM). His participation in these associations has helped him stay at the forefront of global developments in metallurgical engineering and materials science, while also contributing to key conferences and workshops around the world.

Training & Workshops 📋

As a leading expert, Professor Oh has conducted various training programs and workshops aimed at knowledge transfer and skill development for both students and professionals. His customized corporate training sessions have helped industries improve their surface treatment processes, enhancing their competitiveness in the global market. Additionally, his hands-on workshops on advanced materials convergence have become highly sought-after learning opportunities for engineers.

Oral Presentations 🎤

Professor Oh is a frequent presenter at international conferences and symposia, where he shares his cutting-edge research with global audiences. His presentations on corrosion resistance and eco-friendly material design have been particularly well-received, drawing attention from industry leaders and fellow researchers.

Tasks Completed as a Researcher ✅

Over the years, Professor Oh has completed several impactful research tasks, including the successful development of high-strength Zn-Mg-Al alloy coatings for the automotive industry, pioneering eco-friendly materials for EVs, and optimizing the surface treatment technologies for mass production. His achievements have helped improve the performance and sustainability of materials used in critical industries.

Success Factors 🔑

Professor Oh attributes his success to a combination of scientific curiosity, industry collaboration, and a strong commitment to sustainable innovation. His ability to translate academic research into practical, industry-ready solutions has been a key factor in his career growth.

Publications & Laboratory Experience 🔬📖

With extensive laboratory experience in material analysis and surface treatments, Professor Oh has authored numerous publications detailing his findings in metallurgy and alloy coating. His papers contribute valuable insights into the future of materials engineering, particularly in automotive and construction sectors.

📖Publications:

Paper Title: Adhesion strength improvement of thermally sprayed metallic coating on carbon-fiber-reinforced polymer composite

  • Authors: Pradhan, S.K., Kwon, E.-P., Kweon, L.J., Oh, M.-S.
  • Journal: Materials Today Communications
  • Year: 2024

Paper Title: The impact of annealing temperature and time on the grain distribution and texture evolution of cold-rolled electric-furnace annealed low-carbon steel

  • Authors: Mohapatra, S., Kumar Pradhan, S., Oh, M.-S.
  • Journal: Materials Letters
  • Year: 2024

Paper Title: Intercritically Annealed Medium-Manganese Steel: Insights into Microstructural and Microtextural Evolution, Strain Distribution, and Grain Boundary Characteristics

  • Authors: Mohapatra, S., Baek, K.-C., Oh, M.-S.
  • Journal: Materials
  • Year: 2024

Paper Title: Effects of Si Addition on Interfacial Microstructure and Corrosion Resistance of Hot-Dip Zn–Al–Mg–Si Alloy-Coated Steel

  • Authors: So, S.-M., Grandhi, S., Kwon, E.-P., Oh, M.-S.
  • Journal: Crystals
  • Year: 2024

Paper Title: In-Situ Wettability Analysis Of AI Coating Influence on Hot-Dip Galvanizing Properties of Advanced High-Strength Steels

  • Authors: Grandhi, S., Jin, K.-H., Kim, M.-S., Lee, S.-H., Oh, M.-S.
  • Journal: Archives of Metallurgy and Materials
  • Year: 2024

 

Daisy Nestler | Electrical and Thermal Conductivity of FRPs | Best Researcher Award

Prof Dr. Daisy Nestler | Electrical and Thermal Conductivity of FRPs | Best Researcher Award

Technische Universität Chemnitz, SLK, TKV –  Germany

Professional Profiles:

Prof. Dr.-Ing. habil. Daisy Nestler: A Trailblazer in Composite Materials and Lightweight Structures 🏗️

Early Academic Pursuits 📚

Prof. Dr.-Ing. habil. Daisy Nestler embarked on her academic journey at TU Chemnitz, where she earned her Doctorate in 1988. Her thesis focused on the “Influencing of layer formation by carbon and modified process parameters during CVD-boriding of ferrous materials.” She later achieved her habilitation in 2013 with a dissertation titled “Composite Materials – Material Compounds: Status quo and research approaches,” establishing herself as a leading expert in composite materials and hybrid compounds.

Professional Endeavors and Leadership Roles 🚀

Prof. Nestler’s career has been marked by numerous leadership roles:

  • Since April 2022, she has been leading the Funded Research Group “Textile Plastic Composites and Hybrid Compounds.”
  • From October 2016 to March 2022, she served as the Head of the Endowed Chair “Textile Plastic Composites and Hybrid Compounds” at the Institute of Lightweight Structures, Chemnitz University of Technology (CUT).
  • Her previous roles include being the Development Coordinator for “Hybrid Materials in Textile Lightweight Construction” at the Saxon Textile Research Institute e. V. (2017-2018) and Head of the Research Domain “Semi-finished Products and Preform Technologies” in the Cluster of Excellence 1075 “Merge Technologies for Multifunctional Lightweight Structures, MERGE” (2012-2019).

Research Focus and Innovations 🔬

Prof. Nestler’s research encompasses a broad spectrum of areas within materials science, including:

  • Preforms and Preform Technologies
  • Composite Materials (Polymer-Matrix Composites, Metal-Matrix Composites, Ceramic-Matrix Composites, Interpenetrated Phase Composites)
  • Hybrid Compounds
  • Lightweight Structures
  • Interface Engineering
  • CVD- and PVD-Coatings
  • Microstructure Analysis

Her innovative work has significantly advanced the understanding and application of composite materials in various industries, particularly in lightweight construction and hybrid material engineering.

Accolades and Recognition 🏆

Prof. Nestler’s contributions to materials science have been recognized through numerous awards and appointments:

  • Since October 2020, she has chaired the Technical Committee 05 (Materials Science and Physical Technologies) of ASIIN e. V.
  • She has been an expert for the Accreditation of study courses of ASIIN e. V. since May 2016.
  • In 2015, she was appointed as a Professor (apl.) at TU Chemnitz.
  • Her extensive publication record includes approximately 190 publications, 17 book chapters, and the acquisition of significant third-party funding (DFG, EU, BMWi, BMBF).

Impact and Influence 🌟

Prof. Nestler’s work has not only advanced academic research but also influenced practical applications in the industry. She has contributed to the development of new materials and technologies, enhancing the performance and durability of composite materials used in lightweight structures. Her leadership in various research groups and committees has fostered collaboration and innovation across the field of materials science.

Legacy and Future Contributions 🌍

Prof. Nestler’s ongoing research and dedication to teaching ensure that her impact on the field will continue to grow. Her work on composite-based hybrid technologies, fiber-reinforced plastics, and innovative material engineering has set a high standard for future research and development. She remains committed to mentoring young scientists and advancing the field of materials science through her continued research and professional activities.

Publication Top Noted: