Yunlei Wang | Composites | Best Researcher Award

Dr. Yunlei Wang | Composites | Best Researcher Award

Assistant professor at Chongqing university of arts and sciences, China

Dr. Yunlei Wang is an accomplished assistant professor and researcher at the School of Materials Science and Engineering, Chongqing University of Arts and Sciences. With a strong passion for advanced materials and composite technology, he has made significant contributions to aluminum alloys and aluminum matrix composites. His academic journey and scientific endeavors reflect a blend of innovation, practical application, and international collaboration. Dr. Wang’s work is recognized not only for its theoretical depth but also for its industrial relevance, particularly in areas such as lightweight structural materials, high-entropy alloys, and surface treatment technologies.

🎓 Education

Dr. Wang received his Ph.D. in 2016 from Chongqing University, where he laid the foundation for his expertise in materials science and engineering. His doctoral research focused on the design and development of metal matrix composites, equipping him with strong theoretical and experimental capabilities. His education empowered him to engage in multidisciplinary work that bridges advanced materials processing, mechanical performance enhancement, and real-world applications.

🧪 Experience

In January 2017, shortly after completing his Ph.D., Dr. Wang began his tenure as an assistant professor at Chongqing University of Arts and Sciences. From November 2020 to January 2023, he furthered his research experience through a postdoctoral fellowship at the Chongqing Academy of Materials. Additionally, he was selected for the Postdoctoral International Training and Exchange Program, which enabled him to conduct collaborative research at the Royal Institute of Technology (KTH) in Sweden from August 2023 to December 2024. These experiences have allowed him to participate in high-level research environments, collaborate internationally, and apply innovative techniques to materials development and characterization.

🔬 Research Interests

Dr. Wang’s core research interests include aluminum and Al-matrix composites, high-entropy alloys (HEAs), ceramics, additive manufacturing (3D printing), and laser-induced high-speed particle impact. He is particularly focused on understanding the relationship between microstructure and mechanical performance in composites. His work has explored the optimization of processing parameters, the introduction of new reinforcement phases, and the improvement of properties such as wear resistance and fatigue strength. This multidisciplinary approach has positioned him as a key contributor to both academic research and industrial material innovation.

🏆 Awards and Recognitions

Dr. Wang has led and participated in various significant research projects, including “Innovative Development and Application Research of Aluminum Matrix Composite Brake Discs” (No. WLHX–2020–0048) and a consultancy project titled “Research on Defect Analysis of Oxide Films and Controllable Preparation Technology Based on Metal Surface Treatment” (No. WLHX–2021–0075). His work has been widely recognized through funding, patents, and publications. Furthermore, his global postdoctoral assignment at KTH, supported by a national-level training program, underlines his growing international reputation. He is now being considered for the prestigious Best Researcher Award under the International Research Awards on Fiber Reinforced Polymer.

📚 Publications

Dr. Wang has authored over 30 SCI-indexed journal publications and holds 20 patents, reflecting the practical and scientific value of his research. Below are seven key publications that highlight the depth and impact of his work:

  1. Wang, Y., et al. (2023)Influence of Laser-induced Particle Impact on Al-Matrix Composite Properties, Materials Science & Engineering ACited by 15 articles.

  2. Wang, Y., et al. (2022)Microstructure Evolution in High-Entropy Alloys Under Rapid Solidification, Journal of Alloys and CompoundsCited by 23 articles.

  3. Wang, Y., et al. (2021)3D Printing of Ceramic-reinforced Metal Matrix Structures, Additive ManufacturingCited by 30 articles.

  4. Wang, Y., et al. (2020)Wear Resistance Enhancement of Al-Matrix Composites via Novel Reinforcement Phases, Surface & Coatings TechnologyCited by 18 articles.

  5. Wang, Y., et al. (2019)Thermo-mechanical Behavior of Aluminum-Based Composites with Nanoparticles, Materials & DesignCited by 20 articles.

  6. Wang, Y., et al. (2018)Optimization of Processing Parameters for Composite Brake Discs, Journal of Materials Processing TechnologyCited by 16 articles.

  7. Wang, Y., et al. (2017)Effect of Heat Treatment on Al-SiC Composites, Materials Chemistry and PhysicsCited by 12 articles.

✅ Conclusion

Taking into account Dr. Yunlei Wang’s:

  • Solid academic background and international research experience,
  • Advanced specialization in materials science with practical industrial relevance,
  • Impressive portfolio of SCI-indexed publications and patents,
  • Active involvement in high-impact research projects,

he clearly demonstrates the excellence, innovation, and global engagement that the Best Researcher Award seeks to honor. His contributions not only advance scientific understanding but also address real-world challenges through applied research.

Jaehyeung Park | polymer composite | Best Researcher Award

Prof. Jaehyeung Park | polymer composite | Best Researcher Award

Associate Professor at Kyungpook National University, South Korea

Jaehyeung Park is an esteemed researcher and academic specializing in polymer science, nanomaterials, and biofibers. His extensive work in developing functional surfaces and interfaces has made significant contributions to material science, particularly in the areas of sustainable biomaterials and fiber-reinforced composites. With years of experience in academia and research institutions, he has been at the forefront of innovations in polymer nanocomposites and sustainable synthesis techniques.

Profile

ORCID

Education

Jaehyeung Park earned his Ph.D. in Polymer Science from the University of Massachusetts Lowell in 2016 under the guidance of Prof. Mingdi Yan. His doctoral research focused on the covalent functionalization of graphene by perfluorophenyl azides, contributing to the understanding of hybrid material synthesis. Prior to his Ph.D., he completed his M.S. in Advanced Organic Materials Science and Engineering at Kyungpook National University, South Korea, in 2010. His master’s thesis revolved around the preparation of hybrid nanofibers and nanoparticles using electrospinning techniques. He also obtained his B.S. in Biofibers and Biomaterials Science from Kyungpook National University in 2008, receiving high honors scholarships during his studies.

Professional Experience

Dr. Park is currently an Associate Professor in the Department of Biofibers and Biomaterials Science at Kyungpook National University, South Korea. Before this role, he served as an Assistant Professor at the same institution from 2020 to 2023 and held a similar position at Dong-Eui University between 2018 and 2020. Additionally, he gained valuable international research experience as a Postdoctoral Research Associate at the Oak Ridge National Laboratory, USA, from 2016 to 2018. His diverse academic and research journey has enabled him to collaborate on groundbreaking projects in polymer synthesis, nanomaterials, and fiber-reinforced composites.

Research Interests

Dr. Park’s research interests are centered around designing and developing advanced functional materials with a focus on polymer and nanomaterials. His work includes the control of nanostructures for optimized performance in various applications and the exploration of nanomaterials’ physical and chemical properties for material innovation. He is also actively engaged in the sustainable synthesis of eco-friendly functional materials from renewable biomass resources, aiming to create high-value polymer nanocomposites for industrial and structural applications. His expertise extends to fiber-reinforced polymer composites, which have broad applications in sustainability and engineering.

Awards and Recognitions

Throughout his career, Dr. Park has received several awards recognizing his contributions to polymer science and biomaterials. Notably, he was honored with the Outstanding Graduate Student Award in Polymer Science in 2014 during his Ph.D. studies. He also received multiple high-honors scholarships from Kyungpook National University during his undergraduate and master’s programs. His contributions to material science and polymer engineering continue to be acknowledged in academic and industrial circles.

Selected Publications

Dr. Park has published extensively in high-impact journals, contributing significantly to the fields of biomaterials, nanotechnology, and polymer science. Some of his notable publications include:

“Exploring the effect of polyol structure and the incorporation of lignin on the properties of bio-based polyurethane” – Published in Polymers (2025), cited by various studies on bio-based materials.

“Characterization of thermo-responsive shape memory bio-based thermoplastic polyurethane (SMTPU) for 3D/4D printing applications” – Published in Fashion and Textile (2025), widely referenced in additive manufacturing research.

“Influence of nanoprecipitation techniques on lignin nanoparticle structure” – Published in Colloids and Surfaces A (2024), cited for advancements in nanoprecipitation methods.

“Sustainable Strategies for Synthesizing Lignin-Incorporated Bio-Based Waterborne Polyurethane with Tunable Characteristics” – Published in Polymers (2023), contributing to green polymer synthesis.

“Fabrication and characterization of Thermoplastic Fiber-Reinforced Composites with Hybrid Fabrics” – Published in Polymer Korea (2023), referenced in materials engineering research.

“Development of Highly Durable Retroreflective Coating with Gravure Chemical Printing” – Published in Textile Coloration and Finishing (2023), highlighting innovations in textile coating.

“One-Shot Synthesis of Thermoplastic Polyurethane Based on Bio-Polyol (Polytrimethylene Ether Glycol) and Characterization of Micro-Phase Separation” – Published in Polymers (2022), widely cited in polymer chemistry.

Conclusion

Dr. Jaehyeung Park’s extensive research output, scientific contributions, global collaborations, and leadership in sustainable material development make him a strong contender for the Best Researcher Award. His commitment to innovation and impactful scientific advancements solidifies his place as a leading researcher in polymer and nanomaterial sciences.