bilge demir | Composites | Distinguished Scientist Award

Prof. Dr. bilge demir | Composites | Distinguished Scientist Award

Professor at Karabuk University, Turkey

Prof. Dr. Bilge Demir is a distinguished academic and researcher at Karabük University, where he serves in the Department of Mechanical Engineering. Over the decades, he has built a robust career focused on materials science, especially in dual-phase steels, composite materials, and resistance spot welding technologies. His professional journey is marked by a balance of scientific depth and practical application, enabling significant advancements in manufacturing and material performance, especially in the automotive and aerospace sectors.

Profile

Scholar

Education

He commenced his academic path with a bachelor’s degree in Metal Education from Gazi University in 1993. He pursued his master’s degree in the same discipline, completing it in 1997 with a thesis on the impact of martensite volume fraction on tensile properties in dual-phase steels. He earned his Ph.D. in 2003 from Gazi University’s Institute of Science with a focus on the manufacturability of dual-phase steels in continuous annealing lines, laying the groundwork for his lifelong research in advanced steel processing.

Experience

Prof. Demir’s academic appointments include professorships at various departments within Karabük University, including Technology and Engineering Faculties. He has served in leadership roles such as Dean, Department Head, and Vice Director of Continuing Education Center, contributing to institutional development alongside his academic responsibilities. His administrative and teaching expertise is further complemented by his supervision of over 20 master’s and doctoral theses.

Research Interests

His research spans dual-phase and TRIP steels, fatigue behavior of spot-welded joints, wear and corrosion in hybrid nanocomposites, and powder metallurgy. He is particularly renowned for experimental and simulation studies on punching processes, mechanical performance optimization of composite materials, and welding behavior of advanced steel alloys. His collaborative works often bridge academia and industry, especially in the fields of automotive and structural materials.

Awards

Prof. Demir’s excellence in research and innovation has earned him notable recognitions, including honors at the “Metalik Fikirler 5” awarded by the Ministry of Science, Industry, and Technology in 2018, and accolades at Selçuk University’s Project Marketplace in 2016. These commendations highlight the practical impact and originality of his work in metallurgical engineering and composite innovation.

Publications

Prof. Demir has published extensively in international peer-reviewed journals. Here are 7 selected works:

  1. “The comparative evaluation of the wear behavior of epoxy matrix hybrid nano-composites via experiments and machine learning models”, Tribology International, 2025 – A high-impact study combining tribological experiments with AI models.

  2. “The punching of DP1000 automotive steel-Al plate composite fabricated by explosive welding: Effect of tool geometry”, Proc. Inst. Mech. Eng. Part E, 2025 – An innovative exploration of tool geometry in composite sheet cutting.

  3. “A Comparative Study on the PMEDM of Novel Ti29Nb13Ta4.6Zr Biomedical Alloys”, Arabian Journal for Science and Engineering, 2025 – A breakthrough in biomedical alloy machining.

  4. “Manufacturing of Low and High-carbon TRIP Steels by Modeling CCT Diagrams”, Journal of Polytechnic, 2025 – A modeling-based optimization of tensile properties in TRIP steels.

  5. “An Investigation on PMEDM of TiB2 and Nanographene-Doped Mg Composites”, Arabian Journal for Science and Engineering, 2025 – A detailed account of hybrid composite machining.

  6. “EVALUATION OF THE BENDING FATIGUE BEHAVIOR… IN ULTRA-HIGH-STRENGTH STEEL’S RSW JOINTS”, Sigma Journal of Engineering and Natural Sciences, 2025 – A key contribution to fatigue modeling in welded joints.

  7. “Wear Friction and Corrosion Performance Assessment on IF, HSLA and DP600 Steels”, Metals and Materials International, 2025 – Addressing performance under severe peening conditions.

Each of these works has been cited in subsequent scientific literature, underscoring his contributions to the field of advanced materials and manufacturing processes.

Conclusion

Prof. Dr. Bilge Demir exemplifies excellence in research, education, and engineering innovation. His interdisciplinary work bridges traditional metallurgy with emerging technologies like AI and simulation, making profound impacts on material performance and industrial applications. As a mentor, author, and leader, he continues to shape the future of manufacturing engineering through persistent exploration and collaborative advancement. His prolific output, leadership roles, and awarded innovations make him an outstanding nominee for the Best Researcher Award in his field.

Valeria Pettarin | Composite Materials Science | Best Researcher Award

Prof. Dr Valeria Pettarin | Composite Materials Science | Best Researcher Award

Professor – Researcher at Institute of Materials Science and Technology / University of Mar del Plata, Argentina

Valeria Pettarin is an accomplished materials scientist specializing in polymer science and engineering. She has held various prestigious academic and research positions, including serving as the Director of the Materials Engineering Department at the University of Mar del Plata. With a strong background in material mechanics, fracture behavior, and sustainable polymer applications, she has significantly contributed to advancing polymer composites and recycled materials. Her extensive research collaborations span multiple countries, reflecting her international influence in the field.

profile

scopus

Education

Valeria Pettarin obtained her degree in Materials Engineering from the University of Mar del Plata in 1998. She further pursued her passion for materials science by earning a Doctorate in Materials Science from the same university in 2002. Throughout her academic journey, she has engaged in research exchanges at prestigious institutions, enhancing her expertise in polymer mechanics, fracture analysis, and sustainable materials.

Experience

Dr. Pettarin’s professional career is marked by her contributions as an academic and researcher. She began as a doctoral fellow at CONICET and later became a postdoctoral fellow, continuing her research in polymer engineering. She has served as an independent researcher at the National Research Council (CONICET) and as Vice-Director of the Polymer Science and Engineering Group at INTEMA. Additionally, she has held visiting professorships at multiple institutions, furthering international collaboration in materials science research.

Research Interests

Her research interests lie in the mechanical, fracture, and impact performance of polymers and their composites, particularly emphasizing the microstructural effects induced by processing techniques. She is also dedicated to sustainable polymer applications, including recycling massively used polymer-based packaging and optimizing polymer composites for enhanced performance. Her work integrates experimental mechanics, material characterization, and innovative polymer processing techniques.

Awards

Dr. Pettarin has received multiple accolades for her contributions to materials science and engineering. She has been recognized for her excellence in polymer research and her commitment to sustainable material development. Her work has been instrumental in bridging academia and industry, leading to technological advancements and industrial collaborations in polymer composites.

Publications

Pettarin, V., Frontini, P.M., Eliçabe, G. (2004). “Inverse Analysis of Impact Test Data: Experimental Study on Polymeric Materials Displaying Brittle Behavior.” Mechanics of Time-Dependent Materials, 8(3), 269-288. Cited by 50+ articles.

Pettarin, V., Fasce, L.A., Frontini, P.M. (2003). “Evaluation of Impact Fracture Toughness of Polymeric Materials by Means of the J-integral Approach.” Polymer Engineering & Science, 43(5), 1081-1095. Cited by 100+ articles.

Pettarin, V., Costantino, A., Rosales, C. (2020). “Polypropylene Blends and Composites: Processing-Morphology-Performance Relationship of Injected Pieces.” IntechOpen. Cited by 30+ articles.

Pettarin, V., Rosales, C., Aït Hocine, N. (2023). “Toughness Improvement of LLDPE/PP Blend by Incorporation of GTR Waste.” Polymer Bulletin. Cited by 20+ articles.

Pettarin, V., Morales, F., Campos, G. (2024). “On the Challenge of Recycling Massively Used Polymer-Based Packaging.” CRC Press. Cited by 15+ articles.

Pettarin, V., Ramirez, C., Agaliotis, E. (2024). “Fracture Toughness and Overall Characterization of PLA-Based Biocomposites with Natural Fibers.” Polymer, 307, 127309. Cited by 10+ articles.

Pettarin, V., Campos, G., Sáiz, L. (2024). “Self-Healing Recyclable Polymers Based on Azobenzenes with Thermoset-like Behavior.” Polymer, 290, 126560. Cited by 12+ articles.

Conclusion

Dr. Valeria Pettarin’s exceptional contributions to materials science, leadership in academia, commitment to sustainability, and impact on global research make her an ideal candidate for the Best Researcher Award. Her work not only advances scientific knowledge but also fosters innovation and environmental responsibility in engineering.

Saeed Shahrokhian | FRP in Renewable Energy | Best Researcher Award

Prof. Saeed Shahrokhian | FRP in Renewable Energy | Best Researcher Award

Academic Staff at Sharif University of Technology, iran

Saeed Shahrokhian is a distinguished professor in the Department of Chemistry at Sharif University of Technology, Tehran, Iran. With a strong background in analytical and electrochemistry, he has made significant contributions to the field, particularly in the development of chemically modified electrodes and nanostructured materials. His research focuses on electrochemical energy storage, biosensors, and water-splitting applications. Over the years, he has been recognized for his academic excellence, research impact, and mentorship, earning numerous accolades from national and international institutions.

profile

ORCID

Education

Saeed Shahrokhian earned his B.Sc., M.Sc., and Ph.D. in Chemistry from Isfahan University in 1990, 1994, and 1999, respectively. His academic journey has been defined by rigorous research in analytical chemistry and electrochemical applications, laying the foundation for his later work in sensor technology and nanomaterials.

Experience

Dr. Shahrokhian began his academic career as an Assistant Professor at Sharif University of Technology in 2000. He was promoted to Associate Professor in 2004 and later attained the rank of Full Professor in 2008. Throughout his career, he has been instrumental in advancing analytical chemistry education and research. His expertise spans a variety of fields, including electroanalytical chemistry, reaction mechanisms in electrochemistry, and bioelectrochemistry.

Research Interests

Dr. Shahrokhian’s research focuses on the design and application of chemically modified electrodes (CMEs), nanostructured materials, and biosensors. He has worked extensively on electrochemical energy storage and conversion devices, capacitive deionization, and electrocatalytic water splitting. His studies also include the development of aptamer-based electrochemical biosensors for detecting cancer biomarkers and pathogenic bacteria, contributing significantly to both environmental and biomedical sciences.

Awards

Dr. Shahrokhian has received several prestigious awards, including the Distinguished Researcher Award from the Ministry of Science, Research, and Technology in Iran (2012, 2017). He has been recognized as a Highly Cited Researcher at Sharif University of Technology and has been listed among the top 1% of highly cited international scientists by ISI Web of Knowledge (2012-2024). His contributions to education have also been acknowledged through multiple “Superior Educational Master” awards from Sharif University of Technology.

Selected Publications

Amini, M. K., Shahrokhian, S., Tangestaninejad, S. (1999). PVC-based Mn(III) Porphyrin Membrane-Coated Graphite Electrode for Determination of Histidine. Analytical Chemistry, 71(13), 2502-2505. Cited by 300 articles.

Shahrokhian, S. (2001). Lead Phthalocyanine as a Selective Carrier for Preparation of a Cysteine-Selective Electrode. Analytical Chemistry, 73(24), 5972-5978. Cited by 250 articles.

Shahrokhian, S., Yazdani, J. (2003). Electrocatalytic Oxidation of Thioglycolic Acid at Carbon Paste Electrode Modified with Cobalt Phthalocyanine. Electrochimica Acta, 48, 4143-4148. Cited by 220 articles.

Shahrokhian, S., Seifi, H., Bagherzadeh, M. (2004). Effects of Ion-Carrier Substituents on the Potentiometric Response Characteristics in Anion-Selective Membrane Electrodes Based on Iron Porphyrins. ChemPhysChem, 5, 652-660. Cited by 190 articles.

Shahrokhian, S., Ghalkhani, M. (2009). Application of Carbon-Paste Electrode Modified with Iron Phthalocyanine for Voltammetric Determination of Epinephrine. Sensors and Actuators B: Chemical, 137, 669-675. Cited by 180 articles.

Shahrokhian, S., Salimian, R. (2018). Ultrasensitive Detection of Cancer Biomarkers Using Conducting Polymer/Electrochemically Reduced Graphene Oxide-Based Biosensor. Sensors and Actuators B, 266, 160-169. Cited by 210 articles.

Shahrokhian, S., Hosseini, H. (2019). Vanadium Dioxide-Anchored Porous Carbon Nanofibers as a Na+ Intercalation Pseudocapacitance Material for Energy Storage Systems. Applied Materials Today, 10, 72-85. Cited by 170 articles.

Conclusion

With his outstanding scientific contributions, high-impact research, and commitment to education, Professor Saeed Shahrokhian exemplifies the qualities of an exceptional researcher. His groundbreaking studies in electrochemical energy storage, biosensors, and nanotechnology have transformed the field and influenced global research directions. His recognitions, publication record, and dedication to advancing science make him a highly deserving candidate for the Best Researcher Award.

 

Wensong Xu | Structural Mechanics of FRPs | Best Researcher Award

Prof. Dr. Wensong Xu | Structural Mechanics of FRPs | Best Researcher Award

Associate professor at Anhui university of science and technology, China

Dr. Xu Wensong is a distinguished researcher and academician specializing in rock mechanics, safety engineering, and applied physics. Currently serving as an associate professor and master’s supervisor at Wuhan Institute of Technology, he has significantly contributed to the field of geotechnical engineering. His research primarily focuses on the mechanical properties of rock materials, energy evolution mechanisms, and safety assessment methodologies. Over the years, Dr. Xu has earned recognition for his pioneering studies in industrial safety, material behavior under stress, and engineering risk evaluation.

Profile

Scopus

Education

Dr. Xu Wensong obtained his Doctorate in Engineering, solidifying his expertise in rock mechanics and safety science. With a strong academic background in applied physics and material mechanics, he has developed a multidisciplinary approach to solving complex engineering problems. His educational journey has been instrumental in shaping his research interests and equipping him with the knowledge necessary to tackle real-world engineering challenges.

Experience

With extensive experience in academia and research, Dr. Xu has played a pivotal role in guiding graduate students and advancing studies related to rock mechanics. His teaching portfolio includes courses on Safety Management Science, Oil and Gas Safety Technology, and Engineering Mechanics, demonstrating his diverse expertise. As a mentor, he has supervised numerous postgraduate students, nurturing the next generation of engineers and researchers. He has also collaborated with multiple institutions and research organizations, contributing to national and international engineering projects.

Research Interest

Dr. Xu’s research is primarily centered around rock mechanics, energy evolution mechanisms, safety engineering, and industrial hazard analysis. His work delves into the impact of stress conditions on rock behavior, leading to innovative safety assessment models and experimental frameworks. His studies on the effects of unloading rate on energy evolution mechanisms in single-sided rock mass failure have been widely cited. His research contributions have enhanced the understanding of material stability and mechanical failure in industrial applications.

Awards and Recognitions

Dr. Xu Wensong has been the recipient of several awards and accolades, recognizing his outstanding contributions to the field of engineering safety and applied physics. Notably, he has received national and provincial-level awards for his research excellence, including distinctions for his innovations in safety science. His work in energy dissipation models and safety control mechanisms has earned him recognition in esteemed academic and professional circles.

Selected Publications

Dr. Xu has authored numerous high-impact research papers in reputable journals. Some of his notable publications include:

Xu Wensong, Zhao Guangming, Meng Xiangrui, Kao Siming, Huang Shunjie, Liu Chongyan (2020) – “Effects of Unloading Rate on Energy Evolution Mechanism in the Single-Side Unloading Failure of Highly Stressed Rock Masses,” Advances in Civil Engineering.

Xu Wensong, Wu Peng, and Li Zhen (2019) – “Energy Dissipation Mechanism of Deep Rock Mass Under High-Stress Conditions,” Journal of Rock Mechanics and Geotechnical Engineering.

Xu Wensong, Yang Jing, and Zhang Wei (2018) – “Triaxial Stress Impact on Rock Mass Behavior: A Study of Industrial Applications,” Journal of Mining Science.

Xu Wensong, Liu Bo, and Zhang Min (2023) – “Experimental Analysis of Rock Fracture Evolution in High-Pressure Environments,” Rock and Soil Mechanics.

Xu Wensong, Chen Hua, and Zhao Yi (2022) – “Numerical Simulation of Rock Failure in Underground Mining Conditions,” International Journal of Mining Science and Technology.

Xu Wensong, Li Feng, and Wang Rong (2021) – “Application of Micro-CT Imaging in Evaluating Rock Fracture Patterns,” Engineering Geology.

Xu Wensong, Wu Peng, and Zhang Hong (2023) – “Seismic Response of Deep Rock Masses: Insights from Laboratory Testing,” Tectonophysics.

Conclusion

Dr. Xu Wensong’s dedication to research, academic excellence, and industrial application makes him a perfect candidate for the Best Researcher Award. His high-impact publications, groundbreaking findings, mentorship, and leadership in engineering safety research establish him as a leading figure in geotechnical and safety engineering. Awarding him this honor would be a well-deserved recognition of his contributions to scientific and technological advancement.