Sophia Immanuel | Textile-Reinforced Concrete | FRP Product Development Excellence Award

Mrs. Sophia Immanuel | Textile-Reinforced Concrete | FRP Product Development Excellence Award

Research Scholar| National Institute of Technology, Tiruchirappalli|India

Mrs. Sophia Immanuel is an enthusiastic and highly motivated researcher in Textile-Reinforced Concrete with strong expertise in structural engineering and sustainable construction materials. She holds a Bachelor of Engineering in Civil Engineering from 2011 to 2015, followed by a Master of Technology in Structural Engineering with excellent academic performance, and a Doctor of Philosophy focused on advanced composite materials from 2022 to 2025. Additionally, she pursued an MBA in Human Resource Management through correspondence between 2020 and 2022. Her research expertise covers Textile-Reinforced Concrete, fibre reinforced composites, impact dynamics, structural dynamics, and magnetorheological dampers for seismic-resistant structures. Sophia has significant experimental experience in tensile behaviour of TRC composites, coir fibre characterization, tensile testing of Textile-Reinforced Concrete, and has received training in Digital Image Correlation technology. Her professional journey includes roles as a Project Intern at Flinders University, Assistant Professor (Guest) at Dr. B. R. Ambedkar Institute of Technology where she also served as NBA Coordinator and Faculty Advisor, and Project Officer at IIT Madras in the BTCM division. She has taught key structural engineering subjects to undergraduate students and was recognized with the Best Faculty Award in 2018. Sophia has published impactful research articles in reputed international journals such as Elsevier and Springer, contributing to the advancement of innovative TRC systems and sustainable low-cost housing. Proficient in tools like MATLAB, ABAQUS, AutoCAD, and Python basics, she continues to build strong collaborations with leading researchers while upholding integrity, dedication, and a deep sense of responsibility in her scientific pursuits.

Featured Publications

Immanuel, S., & Baskar, K. (2025). Low-velocity impact induced damage and dynamic response of two-way textile reinforced concrete slabs. Structures, 80, 110164.

Immanuel, S., & Baskar, K. (2025). Investigating the effect of textile layers on the flexural response of textile reinforced concrete panels. Structures, 71, 1108112.

Immanuel, S., O., Aniket, Baskar, K., & Arun, M. (2023). A state-of-art review on the mechanical performance of basalt textile reinforced concrete (BTRC). The Journal of Mechanics of Materials and Structures, 18(4), 593–618.

Immanuel, S., & Baskar, K. (2023). A state-of-the-art review on sustainable low-cost housing and application of textile reinforced concrete. Innovative Infrastructure Solutions, 8(1), 1–16.

Immanuel, S., & Kaliyamoorthy, B. (2023). Comparative study on the flexural behavior of BTRC and CTRC panels. In Structural Engineering Convention (pp. 569–579). Springer Nature Singapore.

Cruze, D., Gladston, H., Immanuel, S., Loganathan, S., Dharmaraj, T., & Solomon, S. M. (2018). Experimental investigation on magnetorheological damper for RCC frames subjected to cyclic loading. Advances in Civil Engineering Materials, 7(3), 413–427.

Sivasamy Paulsamy | Mechanical Properties | Editorial Board Member

Dr. Sivasamy Paulsamy | Mechanical Properties | Editorial Board Member

Associate Professor | PSR Engineering College | India

Dr. Sivasamy Paulsamy is a highly active researcher in the fields of thermal engineering, nanomaterials, and advanced energy storage systems, with a strong focus on thermal energy storage, phase change materials (PCMs), nanofluids, and solar energy-based storage technologies. His research contributions significantly advance heat transfer enhancement techniques, including the development of nano-enhanced PCMs, graphene- and CNT-based thermal systems, and composite materials engineered for efficient energy storage. With expertise spanning kinematics and dynamics of machinery, strength of materials, thermodynamics, heat and mass transfer, and finite element analysis, he integrates theoretical and experimental approaches to address challenges in next-generation thermal and mechanical systems. Dr. Paulsamy has authored impactful publications, including widely cited works on nano-enhanced PCMs, polymer composites with ZnO nanoparticles, metallic nanoparticle-embedded PCMs, and advanced thermal materials, contributing to over 340 Google Scholar citations with an h-index of 9. His software proficiency encompasses CFD (Fluent), ANSYS, Pro-E, AutoCAD, and SolidWorks, supporting his computational modeling and design research. He has actively participated in AICTE-sponsored training programs, faculty development initiatives, and international conferences on nanoscience, nanotechnology, and functional materials, reflecting his commitment to continuous knowledge advancement and scientific collaboration. In addition to his research activities, he has undertaken various professional responsibilities such as coordinating academic programs, organizing national and international conferences, managing laboratories, and facilitating technical workshops, thereby contributing substantively to the academic and scientific community.

Profile: Scopus | ORCID | Google Scholar

Featured Publications

Sivasamy, P., Harikrishnan, S., Imran Hussain, S., Devaraju, A., & Kalaiselvam, S. (2017). Improved performance of a newly prepared nano-enhanced phase change material for solar energy storage. Journal of Mechanical Science and Technology, 31(10), 4903–4910.

Sivasamy, P., Devaraju, A., & Harikrishnan, S. (2018). Review on heat transfer enhancement of phase change materials (PCMs). Materials Today: Proceedings, 5(6), 14423–14431.

Devaraju, A., Sivasamy, P., & Loganathan, G. B. (2020). Mechanical properties of polymer composites with ZnO nanoparticles. Materials Today: Proceedings, 22, 531–534.

Ayyasamy, L. R., Mohan, A., Rex, L. K., Sivakumar, V. L., Dhanasingh, S. V., … & Sivasamy, P. (2022). Enhanced thermal characteristics of CuO embedded lauric acid phase change material. Thermal Science, 26(2 Part B), 1615–1621.

Sivasamy, P., Harikrishnan, S., Imran Hussain, S., Kalaiselvam, S., … (2019). Improved thermal characteristics of Ag nanoparticles dispersed myristic acid as composite for low temperature thermal energy storage. Materials Research Express, 6(8), 085066.

Alper Bideci | Building Materials | Editorial Board Member

Assoc. Prof. Dr. Alper Bideci | Building Materials | Editorial Board Member

Architecture | Düzce University | Turkey

Assoc. Prof. Dr. Alper Bideci is a leading researcher in construction materials, recognized for his extensive contributions to lightweight concrete technology, polymer-coated aggregates, sustainable building materials, and the performance optimization of cement-based composites. His scholarly work spans mechanical behavior, thermal performance, durability enhancement, fracture energy, shrinkage, creep, and microstructural characterization of advanced concretes, supported by experimental testing and image-processing-based evaluation methods. Dr. Bideci has published numerous high-impact articles in SCI-Expanded journals, including significant studies on polyester-coated pumice aggregates, fiber-reinforced calcium aluminate concrete under elevated temperatures, homogeneity assessment in EPS-integrated mortars, environmental performance of insulated façade panels using life cycle assessment, and the influence of hemp fibers, waste tyre additives, and polymer modifications on strength and fracture properties. His investigations have advanced understanding of eco-efficient composites, permeability control, color and structural homogeneity, and the integration of industrial by-products in construction materials. Dr. Bideci’s research additionally encompasses polymer coatings for lightweight aggregates, the structural behavior of self-compacting concretes containing waste materials, and performance assessments of historical brick and concrete systems through experimental methods. He has led and contributed to funded research projects on polymer-coated aggregates and historical building materials and has achieved substantial international recognition, with over 350 citations reflecting his global impact. His consistent achievements have been honored repeatedly with the Scientific Encouragement Awards of the Scientific and Technical Research Council of Turkey (TÜBİTAK), recognizing his sustained advancements in high-performance, durable, and sustainable construction materials.

Profile: Scopus | Google Scholar

Featured Publications

Bideci, A., Sallı Bideci, Ö., & Ashour, A. (2023). Mechanical and thermal properties of lightweight concrete produced with polyester-coated pumice aggregate. Construction and Building Materials, 394.

Sallı Bideci, Ö., Yilmaz, H., Gencel, O., Bideci, A., Çomak, B., & Nodehi, M. (2023). Fiber-reinforced lightweight calcium aluminate cement-based concrete: Effect of exposure to elevated temperatures. Sustainability, 15, 4722.

Çomak, B., Aykanat, B., Sallı Bideci, Ö., Bideci, A. (2022). Determination of homogeneity index of cementitious composites produced with EPS beads by image processing techniques. Computers and Concrete, 29, 107–115.

Çomak, B., Bideci, A., Aykanat, B., & Sallı Bideci, Ö. (2021). Determination of color homogeneity by image processing in cement-based mortars. Romanian Journal of Materials, 51, 552–557.

Yılmaz, E., Arslan, H., & Bideci, A. (2019). Environmental performance analysis of insulated composite facade panels using life cycle assessment (LCA). Construction and Building Materials, 202, 806–813.

Touha Nazrun | Composite Materials | Best Researcher Award

Mrs. Touha Nazrun | Composite Materials | Best Researcher Award

Mrs. Touha Nazrun | Western Sydney University | Australia

Mrs. Touha Nazrun is an emerging researcher in fire safety engineering whose work demonstrates strong scientific promise, technical depth, and consistent research productivity. Her role as a Casual Research Assistant at Western Sydney University involves conducting experimental studies on the application of developed intumescent coatings on aluminium sheets, ACP cladding panels, gypsum boards, and concrete materials, with a focus on enhancing fire resistance and evaluating material performance under high-temperature conditions. She has authored several peer-reviewed publications in reputable journals, including contributions to Sustainability, Progress in Organic Coatings, and Fire, covering topics such as sustainable biopolymer-based cladding materials, fire performance improvements of aluminium composite panels, and comprehensive reviews of intumescent coating formulations and manufacturing methods. Her conference paper on the fire behaviour of aluminium sheets coated with intumescent materials earned a Best Paper Award, underscoring the originality and impact of her research. She maintains an active research pipeline with submitted and ready-to-submit manuscripts addressing material characterization, polymer–mineral filler compositions, and the use of recycled silicon dioxide in coating systems. Her scientific contributions extend to practical fire safety advancements, sustainable material development, and performance evaluation of protective coatings, reflecting her commitment to solving real-world engineering challenges. Beyond research, she has participated in technical conferences, volunteered in professional events related to fire safety engineering, and engaged in community and organizational activities, demonstrating a strong service orientation alongside academic excellence. Her growing body of work positions her as a promising researcher contributing valuable knowledge to the fields of fire protection materials, sustainable cladding technologies, and applied fire safety engineering.

Profile:  Scopus | ORCID | Google Scholar | ResearchGate

Featured Publications

Nazrun, T., Hassan, M. K., Hossain, M. D., Ahmed, B., Hasnat, M. R., & Saha, S. (2024). Application of biopolymers as sustainable cladding materials: A review. Sustainability, 16(1), 27.

Nazrun, T., Hassan, M. K., Hasnat, M. R., Hossain, M. D., Ahmed, B., & Saha, S. (2025). A comprehensive review on intumescent coatings: Formulation, manufacturing methods, research development, and issues. Fire, 8(4), 155.

Nazrun, T., Hassan, M. K., Hasnat, M. R., Hossain, M. D., & Saha, S. (2025). Improving fire performance of solid aluminium and composite cladding panels incorporating intumescent coatings. Progress in Organic Coatings, 201, 109142.

Nazrun, T., Hassan, M. K., Hasnat, M. R., Hossain, M. D., & Saha, S. (2024). Comparative study on fire behaviour of solid aluminium sheets coated with intumescent materials. Proceedings of the International Conference on Fire Safety Engineering Research and Practice.