Jae-Kwang Kim | Renewable Energy | Best Researcher Award

Assoc. Prof. Dr. Jae-Kwang Kim | Renewable Energy | Best Researcher Award

Assoc. Prof. Dr.  Jae-Kwang Kim | Cheongju University | South Korea

Jae-Kwang Kim is an accomplished materials scientist and energy storage researcher currently serving as Associate Professor and Head of the Department of Energy Conversion Engineering at Cheongju University, Korea, since 2015. He previously held a research-focused Assistant Professorship at UNIST and completed both his postdoctoral research and Ph.D. at Chalmers University of Technology in Sweden, specializing in material science. With over 150 international publications and multiple patents, his work spans lithium-metal, sodium, and seawater battery systems, solid and hybrid electrolytes, organic polymer electrodes, and flexible energy storage technologies. His research contributions have appeared in leading journals such as Advanced Energy Materials, Nano Energy, Energy Storage Materials, Chemical Engineering Journal, and NPG Asia Materials. Kim has led projects in both academia and industry, having worked as an assistant researcher at VK EIG, Hanwha Chemical, and Kaya MA, contributing to cathode development and electrochemical testing. He also served as Research Director at the Solar Research Institute (2018–2019) and currently advises the Chungcheongbuk-do government on energy strategies. His innovations have resulted in more than a dozen patents covering hybrid solid electrolytes, secondary batteries, and organic electrode technologies. Recognized internationally, he received the Korea Minister of Education Award in 2017 and has been ranked by Elsevier among the top 2% most influential researchers worldwide in 2023 and 2024. Through decades of interdisciplinary work bridging materials chemistry, electrochemistry, and device engineering, Kim continues to advance high-performance, sustainable, and scalable energy storage solutions.

Profile: Scopus | ORCID 

Featured Publications

Kim, J.-K., Lee, J., & Yang, J. (2025). Mechanically reinforced solid-state polymer electrolyte using illite filler for flexible all-solid-state Li-metal batteries. Journal of Power Sources.

Kim, J.-K., Lee, J., & Yang, J. (2025). Effect of plasticizers on the electrochemical performance of PEO-based solid polymer electrolytes for rechargeable lithium batteries. Journal of Power Sources.

Wu, F., Kim, J.-K., & Zhang, X. (2021). Dual-anion ionic liquid electrolyte enables stable Ni-rich layered oxide cathodes in lithium batteries. Joule, 5(7), 1736–1750.

Na, D., Kim, J.-K., & Lee, J. (2022). Highly safe and stable Li–CO₂ batteries using conducting polymer composites. Electrochimica Acta, 421, 140–149.

Lee, J. H., Kim, J.-K., & Lee, J. (2022). A high-stable polyacrylonitrile/ceramic composite electrolyte for all-solid-state lithium batteries. Materials Science and Engineering: B, 273, 115–123.

Xinyang He | Thermoelectric Fiber | Young Researcher Award

Assoc. Prof. Dr. Xinyang He | Thermoelectric Fiber | Young Researcher Award

Associate Professor | Nantong University | China

Xinyang He is an Associate Professor at the College of Textiles and Clothing, Nantong University, with research expertise in thermoelectric fibers, smart textiles, and optical-thermal-electrical sensor devices. He completed his doctoral studies in Textile Engineering at Donghua University and was selected for the prestigious Young Talent Support Program of the China Association for Science and Technology. He has been recognized as an outstanding graduate and received government sponsorship to pursue collaborative research with Professor Ouyang Jianyong at the National University of Singapore. He has also led competitive research projects supported by national and institutional funding programs. Dr. He has established a strong research profile, publishing widely in leading international journals such as Nature Communications, Advanced Functional Materials, ACS Nano, and Engineering, with several of his papers recognized among the most highly cited in their field. His work is widely referenced, reflecting the influence of his contributions to wearable energy-harvesting technologies and advanced textile applications. Beyond research, he actively supports the scientific community as a member of the Young Editorial Board for several journals, including Chinese Chemical Letters, Carbon Neutralization, Clean Energy Science and Technology, and Renewable and Sustainable Energy, while also serving as editorial assistant for Research and Textile Research Journal and as a reviewer for multiple other journals. In addition, he has contributed scholarly works to international publications, including a book chapter on thermoelectric materials and devices in Wiley’s Electrospinning. His achievements reflect his dedication to advancing smart materials and innovative textile engineering.

Profile:   ORCID  |  Google Scholar

Featured Publications

He, X., Gu, J., Hao, Y., Zheng, M., Wang, L., Yu, J., & Qin, X. (2022). Continuous manufacture of stretchable and integratable thermoelectric nanofiber yarn for human body energy harvesting and self-powered motion detection. Chemical Engineering Journal, 450, 137937.

He, X., Shi, J., Hao, Y., He, M., Cai, J., Qin, X., Wang, L., & Yu, J. (2022). Highly stretchable, durable, and breathable thermoelectric fabrics for human body energy harvesting and sensing. Carbon Energy, 4(4), 621–632.

Sun, Z., Feng, L., Xiong, C., He, X., Wang, L., Qin, X., & Yu, J. (2021). Electrospun nanofiber fabric: An efficient, breathable and wearable moist-electric generator. Journal of Materials Chemistry A, 9(11), 7085–7093.

Hao, Y., Yan, Q., Liu, H., He, X., Zhang, P., Qin, X., Wang, R., Sun, J., Wang, L., & Yu, J. (2023). A stretchable, breathable, and self-adhesive electronic skin with multimodal sensing capabilities for human-centered healthcare. Advanced Functional Materials, 33(44), 2303881.

He, X., Hao, Y., He, M., Qin, X., Wang, L., & Yu, J. (2021). Stretchable thermoelectric-based self-powered dual-parameter sensors with decoupled temperature and strain sensing. ACS Applied Materials & Interfaces, 13(50), 60498–60507.

He, X., Shi, J., Hao, Y., Wang, L., Qin, X., & Yu, J. (2021). PEDOT:PSS/CNT composites based ultra-stretchable thermoelectrics and their application as strain sensors. Composites Communications, 27, 100822.

Hao, Y., He, X., Wang, L., Qin, X., Chen, G., & Yu, J. (2022). Stretchable thermoelectrics: Strategies, performances, and applications. Advanced Functional Materials, 32(13), 2109790.

He, X., Li, B., Cai, J., Zhang, H., Li, C., Li, X., Yu, J., Wang, L., & Qin, X. (2023). A waterproof, environment-friendly, multifunctional, and stretchable thermoelectric fabric for continuous self-powered personal health signal collection at high humidity. SusMat, 3(5), 709–720.