Alper Bideci | Building Materials | Editorial Board Member

Assoc. Prof. Dr. Alper Bideci | Building Materials | Editorial Board Member

Architecture | Düzce University | Turkey

Assoc. Prof. Dr. Alper Bideci is a leading researcher in construction materials, recognized for his extensive contributions to lightweight concrete technology, polymer-coated aggregates, sustainable building materials, and the performance optimization of cement-based composites. His scholarly work spans mechanical behavior, thermal performance, durability enhancement, fracture energy, shrinkage, creep, and microstructural characterization of advanced concretes, supported by experimental testing and image-processing-based evaluation methods. Dr. Bideci has published numerous high-impact articles in SCI-Expanded journals, including significant studies on polyester-coated pumice aggregates, fiber-reinforced calcium aluminate concrete under elevated temperatures, homogeneity assessment in EPS-integrated mortars, environmental performance of insulated façade panels using life cycle assessment, and the influence of hemp fibers, waste tyre additives, and polymer modifications on strength and fracture properties. His investigations have advanced understanding of eco-efficient composites, permeability control, color and structural homogeneity, and the integration of industrial by-products in construction materials. Dr. Bideci’s research additionally encompasses polymer coatings for lightweight aggregates, the structural behavior of self-compacting concretes containing waste materials, and performance assessments of historical brick and concrete systems through experimental methods. He has led and contributed to funded research projects on polymer-coated aggregates and historical building materials and has achieved substantial international recognition, with over 350 citations reflecting his global impact. His consistent achievements have been honored repeatedly with the Scientific Encouragement Awards of the Scientific and Technical Research Council of Turkey (TÜBİTAK), recognizing his sustained advancements in high-performance, durable, and sustainable construction materials.

Profile: Scopus | Google Scholar

Featured Publications

Bideci, A., Sallı Bideci, Ö., & Ashour, A. (2023). Mechanical and thermal properties of lightweight concrete produced with polyester-coated pumice aggregate. Construction and Building Materials, 394.

Sallı Bideci, Ö., Yilmaz, H., Gencel, O., Bideci, A., Çomak, B., & Nodehi, M. (2023). Fiber-reinforced lightweight calcium aluminate cement-based concrete: Effect of exposure to elevated temperatures. Sustainability, 15, 4722.

Çomak, B., Aykanat, B., Sallı Bideci, Ö., Bideci, A. (2022). Determination of homogeneity index of cementitious composites produced with EPS beads by image processing techniques. Computers and Concrete, 29, 107–115.

Çomak, B., Bideci, A., Aykanat, B., & Sallı Bideci, Ö. (2021). Determination of color homogeneity by image processing in cement-based mortars. Romanian Journal of Materials, 51, 552–557.

Yılmaz, E., Arslan, H., & Bideci, A. (2019). Environmental performance analysis of insulated composite facade panels using life cycle assessment (LCA). Construction and Building Materials, 202, 806–813.

Lysa Benaddache | Civil Engineering | Best Researcher Award

Mrs. Lysa Benaddache | Civil Engineering | Best Researcher Award

Mrs. Lysa Benaddache | University Of Bordj Bou Arreridj | Algeria

Lysa Benaddache is a PhD student jointly affiliated with the LIMEEDD Laboratory, Department of Civil Engineering, Mohamed El-Bachir El-Ibrahimi University of Bordj Bou Arreridj in Algeria, and the L2MGC Laboratory at CY Cergy Paris Université in France. She holds a Master’s degree in Hydraulic Constructions and Developments and is currently engaged in doctoral research focusing on the development of sustainable eco-composite materials for the repair and strengthening of concrete structures under the effects of climate change. she has also served as a part-time lecturer, contributing to academic teaching and the supervision of final-year projects. Her research integrates areas such as reinforced concrete corrosion, eco-material design, and geopolymer technology aimed at sustainable structural repair. With an h-index of 3 on Scopus and seven published journal articles, her scientific contributions emphasize the use of natural fibers, industrial waste, and biowaste in developing eco-friendly alternatives to synthetic composites. Her studies demonstrate that certain natural fibers can match or even surpass the mechanical properties of traditional glass fibers, enhancing structural durability and sustainability. She is an active member of both the LIMEEDD and L2MGC laboratories, collaborating on innovative research in fiber-reinforced eco-composites, particularly focusing on optimizing date palm fiber treatment to improve mechanical performance and environmental resilience. Dedicated to advancing sustainable construction materials, Lysa Benaddache’s research contributes significantly to eco-innovation and the future of resilient infrastructure systems.

Profile:  ScopusGoogle Scholar

Featured Publications

Benaddache, L., Belkadi, A. A., Berkouche, A., Hadzima-Nyarko, M., et al. (2025). Modeling and optimization for the combined valorization of calcined sediments and ground blast-furnace slag in eco-mortar formulations: Rheological, mechanical, microstructural, and environmental assessments. Structures.

Benaddache, L., Belkadi, A. A., Berkouche, A., Aggoun, S., et al. (2025). Advancing structural flexural reinforcement with natural and synthetic fiber composites: Optimization of EBR and EBROG methods supported by DIC. Structures.

Berkouche, A., Belkadi, A. A., Benaddache, L., Aggoun, S., et al. (2025). Enhancing physical, mechanical, and durability properties of slag-based geopolymers through ceramic waste incorporation: A comprehensive optimization study. Journal of the Taiwan Institute of Chemical Engineers.

Benaddache, L., Belkadi, A. A., Berkouche, A., Amziane, S., Alomayri, T., Achour, Y., & Benammar, A. (2024). Experimental optimization of low-carbon cellular foam geopolymers incorporating crushed stone sand and flax fiber using central composite design. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 4, 3999–4019.

Benaddache, L., Belkadi, A. A., Kessal, O., Tayebi, T., & Aggoun, S. (2024). Comparative study on externally bonded heat-treated jute and glass fiber reinforcement for repair of pre-cracked high performance concrete beams.