Ed-Dariy Yasmina | Concrete | Research Excellence Award

Assist. Prof. Dr. Ed-Dariy Yasmina | Concrete | Research Excellence Award

Assistant Professor | National School of Architecture | Morocco

Assist. Prof. Dr. Yasmina ED-DARIY is an accomplished researcher in civil and environmental engineering, with extensive expertise in structural analysis and design, construction materials, geotechnical studies, building acoustics, environmental impact assessments, thermal and energy efficiency, and the strengthening of reinforced concrete using fiber-based composites. Her research has focused on sustainable construction and innovative concrete reinforcement methods, particularly the use of natural fibers such as jute for enhancing the mechanical performance of concrete members. She has contributed significantly to the understanding of the effects of alkali treatments and curing conditions on jute fiber-reinforced concrete, as well as the behavior of concrete cylinders and square columns strengthened with jute fiber-reinforced polymer (JFRP) composites. Her publications in peer-reviewed journals and presentations at international conferences reflect her commitment to advancing knowledge in concrete strengthening techniques using both synthetic and natural composites. Beyond her technical research, Dr. ED-DARIY actively engages in community and professional initiatives, having founded the Cultural Club at Centre Ajial and the Civil Engineering Club at FST Tangier, and served as Secretary-General of the Astronomy Association of Tangier. She has also organized outreach programs and events for orphaned children, demonstrating a strong commitment to social responsibility and the promotion of science in society. Her work exemplifies excellence in research, technical innovation, and societal impact, making her a highly deserving candidate for recognition through prestigious awards in research and innovation.

Profile: Scopus  | Google Scholar | ResearchGate

Featured Publications

  • Ed-Dariy, Y., Lamdour, N., Cherradi, T., Rotaru, A., Barbuta, M., & Mihai, P. (2020). Effect of alkali treatment of jute fibers on the compressive strength of normal-strength concrete members strengthened with JFRP composites. 淡江理工學刊, 23(4), 677–685.

  • Ed-Dariy, Y., Lamdouar, N., Cherrad, T., Rotaru, A., Barbuta, M., & Mihai, P. (2021). The influence of the curing conditions on the behavior of jute fibers reinforced concrete cylinders. Periodica Polytechnica Civil Engineering, 65(4), 1162–1173.

  • Ed-Dariy, Y., Lamdour, N., Cherradi, T., Rotaru, A., Barbuta, M., Mihai, P., … (2020). The behavior of concrete cylinders confined by JFRP composites: Effect of KOH solution. In 5th World Congress on Civil, Structural, and Environmental Engineering.

  • Ed-Dariy, Y., Lamdouar, N., Cherradi, T., Rotaru, A., Barbuta, M., … (2020). Experimental investigation of the effects of NaOH and KOH solution on the behavior of concrete square columns reinforced by JFRP composites. In 5th World Congress on Civil, Structural, and Environmental Engineering.

  • Ed-Dariy, Y., El Bhiri, B., & Deifalla, A. (2025). A review of concrete strengthening methods using synthetic and natural composites. Engineering Proceedings, 112(1), 35.

Sophia Immanuel | Textile-Reinforced Concrete | FRP Product Development Excellence Award

Mrs. Sophia Immanuel | Textile-Reinforced Concrete | FRP Product Development Excellence Award

Research Scholar| National Institute of Technology, Tiruchirappalli|India

Mrs. Sophia Immanuel is an enthusiastic and highly motivated researcher in Textile-Reinforced Concrete with strong expertise in structural engineering and sustainable construction materials. She holds a Bachelor of Engineering in Civil Engineering from 2011 to 2015, followed by a Master of Technology in Structural Engineering with excellent academic performance, and a Doctor of Philosophy focused on advanced composite materials from 2022 to 2025. Additionally, she pursued an MBA in Human Resource Management through correspondence between 2020 and 2022. Her research expertise covers Textile-Reinforced Concrete, fibre reinforced composites, impact dynamics, structural dynamics, and magnetorheological dampers for seismic-resistant structures. Sophia has significant experimental experience in tensile behaviour of TRC composites, coir fibre characterization, tensile testing of Textile-Reinforced Concrete, and has received training in Digital Image Correlation technology. Her professional journey includes roles as a Project Intern at Flinders University, Assistant Professor (Guest) at Dr. B. R. Ambedkar Institute of Technology where she also served as NBA Coordinator and Faculty Advisor, and Project Officer at IIT Madras in the BTCM division. She has taught key structural engineering subjects to undergraduate students and was recognized with the Best Faculty Award in 2018. Sophia has published impactful research articles in reputed international journals such as Elsevier and Springer, contributing to the advancement of innovative TRC systems and sustainable low-cost housing. Proficient in tools like MATLAB, ABAQUS, AutoCAD, and Python basics, she continues to build strong collaborations with leading researchers while upholding integrity, dedication, and a deep sense of responsibility in her scientific pursuits.

Featured Publications

Immanuel, S., & Baskar, K. (2025). Low-velocity impact induced damage and dynamic response of two-way textile reinforced concrete slabs. Structures, 80, 110164.

Immanuel, S., & Baskar, K. (2025). Investigating the effect of textile layers on the flexural response of textile reinforced concrete panels. Structures, 71, 1108112.

Immanuel, S., O., Aniket, Baskar, K., & Arun, M. (2023). A state-of-art review on the mechanical performance of basalt textile reinforced concrete (BTRC). The Journal of Mechanics of Materials and Structures, 18(4), 593–618.

Immanuel, S., & Baskar, K. (2023). A state-of-the-art review on sustainable low-cost housing and application of textile reinforced concrete. Innovative Infrastructure Solutions, 8(1), 1–16.

Immanuel, S., & Kaliyamoorthy, B. (2023). Comparative study on the flexural behavior of BTRC and CTRC panels. In Structural Engineering Convention (pp. 569–579). Springer Nature Singapore.

Cruze, D., Gladston, H., Immanuel, S., Loganathan, S., Dharmaraj, T., & Solomon, S. M. (2018). Experimental investigation on magnetorheological damper for RCC frames subjected to cyclic loading. Advances in Civil Engineering Materials, 7(3), 413–427.

Harsha Sai | Concrete | Best Researcher Award

Mr. Harsha Sai | Concrete | Best Researcher Award

Mr. Harsha Sai | KL University | India

Mr. Harsha Sai is a dedicated structural engineering researcher whose work reflects strong technical depth, practical relevance, and a clear focus on advancing sustainable and high-performance construction materials. His research contributions span hybrid fiber–reinforced concrete, fly ash–based material optimization, GFRP and steel reinforcement behavior, and structural performance enhancement in diverse conditions. He has authored multiple peer-reviewed publications addressing mechanical behavior, flexural performance, and material durability, including studies on M40 concrete incorporating hybrid fibers and fly ash, comparative flexural analysis of GFRP and steel rebars in modified concrete mixes, and performance assessments of building designs on complex terrains. His work demonstrates a commitment to improving structural reliability, sustainability, and cost-effective engineering solutions. Alongside his research, he has presented at conferences and actively engaged in professional development through advanced software certifications and workshops related to sustainable construction, corrosion-free infrastructure, and emerging technologies such as 3D-printed concrete. He is proficient in advanced structural design and analysis tools including AutoCAD, ETABS, REVIT, and STAAD.Pro, enabling seamless integration between analytical research and practical engineering application. His experience in design consultancy, secondary steel detailing, and infrastructure component development further strengthens his ability to translate research insights into real-world engineering solutions. Through consistent scholarly output, hands-on project involvement, and participation in industry knowledge-sharing platforms, he has demonstrated a strong commitment to contributing to modern structural engineering challenges. His profile reflects an evolving researcher with the capability to drive innovation, support sustainable development goals, and contribute meaningful advancements to the field of structural engineering.

Profile: Scopus | Google Scholar | ResearchGate

Featured Publications

Khan, A. R., Rajesh, B., Prakash, B. J. P., & Varma, V. H. S. C. H. S. (2019). Design of a gravity dam. IJRAR – International Journal of Research and Analytical Reviews, 6(1), 4.

Sai, V. H., Lingeshwaran, N., Pratheba, S., & L. B. V. (2025). Enhanced mechanical and flexural performance of M40 concrete with hybrid fibers and fly ash replacement. Procedia Structural Integrity, 70, 509–516.

Vudata Harsha Sai, P. J., Lingeshwaran, N., Prasanna, P. K., & George Fernandez Raj, A. (2025). Flexural behavior of GFRP rebars and steel rebars with polypropylene fibers and fly ash-based concrete. Research on Engineering Structures and Materials, 17.

Navaneeth, L. N. V. H. S., Sravani, C., Koteswara Rao, & Thiyagarajan. (2025). Optimizing building design on sloping terrain: A comparative analysis of G+10 storied pre-engineered buildings on 10-degree slope and flat ground. International Journal of Materials, Mechanics, Mechatronics and Engineering, 2025.