Hossein Mahmoudi Chenari | Carbon Composite | Editorial Board Member

Dr. Hossein Mahmoudi Chenari | Carbon Composite | Editorial Board Member

Faculty Member | Guilan University | Iran

Dr. Hossein Mahmoudi Chenari is a dedicated materials scientist whose research focuses on the design, synthesis, characterization, and application of nanostructured materials and functional thin films. His work spans a broad range of advanced materials, including metal oxides, composite systems, carbon fibers, two-dimensional fibers, nanofibers, and semiconductor devices. He has expertise in optoelectronic materials, gas sensors, photodetectors, nonlinear optical structures, and semiconductor device physics, with strong command of C–V, I–V, thermal evaporation, electrospinning, UV/Vis photodetector mechanisms, and complex impedance spectroscopy. His research contributions emphasize the interplay between microstructure, electronic behavior, and device performance, enabling the development of improved sensing platforms and high-efficiency photonic and electronic components. Dr. Chenari has produced impactful publications across high-visibility journals, including a comprehensive study on the effect of carbonization temperature on the physical and chemical properties of carbon fibers, published in Scienzinc tific Reports, which advances understanding of thermal processing and material optimization. His work on magnesium-ferrite nanofibers, published in the Journal of Magnetism and Magnetic Materials, explores Rietveld refinement, morphology, optical behavior, and magnetic properties relevant to multifunctional magnetic devices. Earlier studies in Current Applied Physics detail the dielectric response and electrical conductivity of Cu/nano-SnO₂ thick films as well as the ultrahigh dielectric constant observed in novel synthesized SnO₂ nanoparticle films, contributing significantly to dielectric material engineering. His research on titanium dioxide nanoparticles, published in Materials Research, provides insights into synthesis, X-ray line analysis, and chemical composition, highlighting his extensive capabilities in structural and optical characterization. Collectively, his work strengthens foundational knowledge and technological advancement in nanomaterials, electronic materials, and device-oriented material systems.

Profile: Google Scholar

Featured Publications

Shokrani Havigh, R., & Mahmoudi Chenari, H. (2022). A comprehensive study on the effect of carbonization temperature on the physical and chemical properties of carbon fibers. Scientific Reports, 12(1), 10704.

Ghazi, N., Chenari, H. M., & Ghodsi, F. E. (2018). Rietveld refinement, morphology analysis, optical and magnetic properties of magnesium-zinc ferrite nanofibers. Journal of Magnetism and Magnetic Materials, 468, 132–140.

Chenari, H. M., Golzan, M. M., Sedghi, H., Hassanzadeh, A., & Talebian, M. (2011). Frequency dependence of dielectric properties and electrical conductivity of Cu/nano-SnO₂ thick film/Cu arrangement. Current Applied Physics, 11(4), 1071–1076.

Chenari, H. M., Hassanzadeh, A., Golzan, M. M., Sedghi, H., & Talebian, M. (2011). Frequency dependence of ultrahigh dielectric constant of novel synthesized SnO₂ nanoparticles thick films. Current Applied Physics, 11(3), 409–413.

Chenari, H. M., Seibel, C., Hauschild, D., Reinert, F., & Abdollahian, H. (2016). Titanium dioxide nanoparticles: Synthesis, X-ray line analysis and chemical composition study. Materials Research, 19, 1319–1323.

Md Abdul Based | Hybrid Reinforced composites | Best Researcher Award

Mr. Md Abdul Based | Hybrid Reinforced composites | Best Researcher Award 

Mr. Md Abdul Based | Rangpur Textile Engineering College, Rangpur | Bangladesh

Md. Abdul Based is a dedicated researcher in materials science and textiles with a strong academic and technical background in polymers, composites, and fiber-based materials. His research focuses on developing functional and sustainable hybrid composite materials integrating natural and synthetic fibers, highlighted by his publication “Extraction of banana fiber and characterization analysis of a hybrid (banana, jute, carbon, and glass) reinforced composite material” in Results in Materials. Professionally, he has served as an Assistant Merchandiser (Technical & Sales) at Wymsun Textile Co., Ltd., where he managed materials sourcing, quality assurance, and production logistics, and as an intern at Ha-Meem Group, gaining hands-on experience in production and materials testing. His research interests span composites, nanomaterials, technical textiles, biomaterials, and polymer sciences. Technically proficient in SEM, TEM, XRD, DSC, and universal testing instruments, he is well-versed in ASTM, AATCC, and ISO standards. He has also completed several specialized online certifications in materials science, nanotechnology, and engineering mechanics from leading global universities. Known for his analytical ability, problem-solving mindset, and quick learning, he aims to contribute significantly to the advancement of sustainable materials and next-generation textile technologies through continued research and innovation.

Profile: ORCID

Featured Publications

Based, M. A. (n.d.). Extraction of banana fiber and characterization analysis of a hybrid (banana, jute, carbon and glass) reinforced composite material.

Suresh Vellingiri | Matrix Composites | Pioneer Researcher Award

Dr. Suresh Vellingiri | Matrix Composites | Pioneer Researcher Award

Associate Professor | Kalaignar karunanidhi Institute of Technology | India

Dr. Suresh Vellingiri is a distinguished academic and researcher in the field of Mechanical Engineering, currently serving as an Associate Professor at KIT–Kalaignarkarunanidhi Institute of Technology, Coimbatore. He holds a Ph.D. in Mechanical Engineering from Anna University, obtained in 2014, along with an M.E. in Engineering Design and a B.E. in Mechanical Engineering, both with first-class distinction. With over two decades of academic and research experience, including 11 years post-Ph.D., Dr. Vellingiri has made notable contributions in materials and manufacturing processes, composite materials, CAD/CAM, FEA, and additive manufacturing technologies. His doctoral research focused on the mechanical testing and machining parameter analysis of LM25 aluminium hybrid metal matrix composites reinforced with boron carbide and graphite. A recognized research supervisor under Anna University, he has published extensively in reputed journals, achieving over 970 citations with an h-index of 13 and i10-index of 16. His research includes innovative works on intelligent control systems, solar energy applications, and biofuels with nano-additives. Beyond research, Dr. Vellingiri has played several academic leadership roles, including Research Coordinator, NBA/NAAC Criteria Coordinator, and International Conference Organizer at various engineering institutions. His consistent efforts in promoting academic excellence, mentoring young researchers, and integrating modern design and manufacturing concepts into education exemplify his dedication to advancing engineering science and technology. Through his scholarly impact, leadership, and research innovation, Dr. Vellingiri continues to be a driving force in the evolving field of mechanical and manufacturing engineering.

Profile:  ORCID Google Scholar

Featured Publications

  • Perundyurai, T. S., Vellingiri, S., Rajendrian, S., Munusamy, S., & Chinnaiyan, S. (2020). K-nearest neighbour technique for the effective prediction of refrigeration parameter compatible for automobile. Thermal Science, 24(1 Part B), 565–569.

  • Vigneshkumar, N., Venkatasudhahar, M., Kumar, P. M., Ramesh, A., Subbiah, R., & Vellingiri, S. (2021). Investigation on indirect solar dryer for drying sliced potatoes using phase change materials (PCM). Materials Today: Proceedings, 47, 5233–5238.

  • Vasanthaseelan, S., Kumar, P. M., Anandkumar, R., Ram, K. H., Subbiah, R., & Vellingiri, S. (2021). Investigation on solar water heater with different types of turbulators. Materials Today: Proceedings, 47, 5203–5208.

  • Saravankumar, P. T., Suresh, V., Vijayan, V., & Godwin Antony, A. (2019). Ecological effect of corn oil biofuel with SiO₂ nano-additives. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 41, 1–10.

  • Sathish Kumar, A., Naveen, S., Vijayakumar, R., Suresh, V., Asary, A. R., & Others. (2023). An intelligent fuzzy-particle swarm optimization supervisory-based control of robot manipulator for industrial welding applications. Scientific Reports, 13(1), 8253.