61 / 100 SEO Score

Dr. Sun Jae Yoo | Civil Engineering | FRP Engineering Excellence Award

Researcher | University of Illinois at Urbana-Champaign | United States

Dr. Sun-Jae Yoo is a leading researcher in advanced FRP engineering, with a strong focus on the structural performance, bond behavior, and durability of CFRP bars used in concrete systems under normal and extreme conditions. His work significantly advances understanding of helically ribbed CFRP bar bonding, development length, flexural behavior, and lap-splice mechanics in UHPC and UHPFRC matrices, providing crucial insights for enhancing structural safety and design efficiency. He has conducted extensive research on the residual bond behavior of CFRP and steel reinforcements after elevated-temperature exposure, contributing to improved fire-resilience strategies for modern infrastructure. Dr. Yoo’s research portfolio further includes development of smart strengthening techniques for fire-damaged concrete structures using hybrid FRP bars and advanced cementitious composites, alongside major contributions to CNT-reinforced lightweight high-strength concrete, DfMA-based modular bridge systems, and electrically conductive concretes for EMP protection. His publications in high-impact journals highlight innovative findings on microstructural enhancement, creep reduction, and structural performance gains enabled by CNT and FRP technologies. Through participation in multiple national research programs, he has advanced solutions for zero-corrosion CFRP reinforcement, sustainable shelter-in-place systems, and next-generation composite materials. His achievements, supported by multiple awards for outstanding papers and research excellence, demonstrate his leadership in developing resilient, high-performance FRP-integrated structural systems.

Profile:  ORCID  |  Google Scholar

Featured Publications

  • Yoo, S. J., Hong, S. H., & Yoon, Y. S. (2023). Bonding behavior and prediction of helically ribbed CFRP bar embedded in ultra-high-performance concrete (UHPC). Case Studies in Construction Materials, 19, e02253.

  • Yoo, S. J., Kim, Y. H., Yuan, T. F., & Yoon, Y. S. (2022). Evaluation of residual bond behavior of CFRP and steel bars embedded in UHPC after exposure to elevated temperature. Journal of Building Engineering, 56, 104768.

  • Hong, S. H., Choi, J. S., Yoo, S. J., Yoo, D. Y., & Yoon, Y. S. (2024). Reinforcing effect of CNT on the microstructure and creep properties of high-strength lightweight concrete. Construction and Building Materials, 428, 136294.

  • Yoo, S. J., Hong, S. H., Yoo, D. Y., & Yoon, Y. S. (2024). Flexural bond behavior and development length of ribbed CFRP bars in UHPFRC. Cement and Concrete Composites, 146, 105403.

  • Hong, S. H., Choi, J. S., Yoo, S. J., & Yoon, Y. S. (2023). Structural benefits of using carbon nanotube reinforced high-strength lightweight concrete beams. Developments in the Built Environment, 16, 100234.

Sun Jae Yoo | Civil Engineering | FRP Engineering Excellence Award

You May Also Like