59 / 100 SEO Score

Dr. Hossein Mahmoudi Chenari | Carbon Composite | Editorial Board Member

Faculty Member | Guilan University | Iran

Dr. Hossein Mahmoudi Chenari is a dedicated materials scientist whose research focuses on the design, synthesis, characterization, and application of nanostructured materials and functional thin films. His work spans a broad range of advanced materials, including metal oxides, composite systems, carbon fibers, two-dimensional fibers, nanofibers, and semiconductor devices. He has expertise in optoelectronic materials, gas sensors, photodetectors, nonlinear optical structures, and semiconductor device physics, with strong command of C–V, I–V, thermal evaporation, electrospinning, UV/Vis photodetector mechanisms, and complex impedance spectroscopy. His research contributions emphasize the interplay between microstructure, electronic behavior, and device performance, enabling the development of improved sensing platforms and high-efficiency photonic and electronic components. Dr. Chenari has produced impactful publications across high-visibility journals, including a comprehensive study on the effect of carbonization temperature on the physical and chemical properties of carbon fibers, published in Scienzinc tific Reports, which advances understanding of thermal processing and material optimization. His work on magnesium-ferrite nanofibers, published in the Journal of Magnetism and Magnetic Materials, explores Rietveld refinement, morphology, optical behavior, and magnetic properties relevant to multifunctional magnetic devices. Earlier studies in Current Applied Physics detail the dielectric response and electrical conductivity of Cu/nano-SnO₂ thick films as well as the ultrahigh dielectric constant observed in novel synthesized SnO₂ nanoparticle films, contributing significantly to dielectric material engineering. His research on titanium dioxide nanoparticles, published in Materials Research, provides insights into synthesis, X-ray line analysis, and chemical composition, highlighting his extensive capabilities in structural and optical characterization. Collectively, his work strengthens foundational knowledge and technological advancement in nanomaterials, electronic materials, and device-oriented material systems.

Profile: Google Scholar

Featured Publications

Shokrani Havigh, R., & Mahmoudi Chenari, H. (2022). A comprehensive study on the effect of carbonization temperature on the physical and chemical properties of carbon fibers. Scientific Reports, 12(1), 10704.

Ghazi, N., Chenari, H. M., & Ghodsi, F. E. (2018). Rietveld refinement, morphology analysis, optical and magnetic properties of magnesium-zinc ferrite nanofibers. Journal of Magnetism and Magnetic Materials, 468, 132–140.

Chenari, H. M., Golzan, M. M., Sedghi, H., Hassanzadeh, A., & Talebian, M. (2011). Frequency dependence of dielectric properties and electrical conductivity of Cu/nano-SnO₂ thick film/Cu arrangement. Current Applied Physics, 11(4), 1071–1076.

Chenari, H. M., Hassanzadeh, A., Golzan, M. M., Sedghi, H., & Talebian, M. (2011). Frequency dependence of ultrahigh dielectric constant of novel synthesized SnO₂ nanoparticles thick films. Current Applied Physics, 11(3), 409–413.

Chenari, H. M., Seibel, C., Hauschild, D., Reinert, F., & Abdollahian, H. (2016). Titanium dioxide nanoparticles: Synthesis, X-ray line analysis and chemical composition study. Materials Research, 19, 1319–1323.

Hossein Mahmoudi Chenari | Carbon Composite | Editorial Board Member

You May Also Like